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Abstract 

Background  This study aims to identify potential biomarkers in the buffy coat of drug-resistant epilepsy (DRE) 
patients with mesial temporal lobe epilepsy and to elucidate associated pathways.

Methods  A comprehensive non-targeted metabolomic and Gene Expression Omnibus (GEO) datasets analysis 
was first performed on buffy coat from DRE patients and non-epilepsy (CON) patients. Potential enriched biomarkers 
and pathways were integrated with gene expression profiles from GEO datasets to identify robust biomarkers.

Results  In the DRE group, there were 15 patients (10 males and 5 females), with an average age of (37.67 ± 15.53) 
years. In the CON group, there were 10 patients (7 males and 3 females), with an average age of (51.60 ± 18.20) years. 
A total of 27 potential biomarkers were identified, including 7 down-regulated and 8 up-regulated. Additionally, 
9 potential pathways related to DRE were identified. Notably, purine metabolism, tryptophan metabolism 
and aminoacyl-tRNA metabolism were closely related to DRE. Purine metabolism was up-regulated, while aminoacyl-
tRNA and tryptophan metabolism were down-regulated.

Conclusions  The integration of metabolomic data with GEO datasets analysis offers a new strategy to identify robust 
biomarkers and pathways. The findings obtained from the buffy coat analysis offer potential insights for the diagnosis 
and treatment of DRE.
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Introduction
As one of the most common neurological disorders, 
epilepsy is estimated to affect around 70 million people 
worldwide [1]. Although the number of available 
antiseizure medications (ASMs) has increased 
substantially in the past three decades, about 30% 
of patients continue to experience seizures despite 
treatment, categorizing them as having drug-resistant 
epilepsy (DRE) [2]. Mesial temporal lobe epilepsy (mTLE) 
is among the most common forms of adult focal epilepsy 
and is frequently drug resistant [3]. While some patients 
with mTLE may be candidates for resective surgery, 
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25–35% of mTLE patients fail to achieve sustained 
seizure freedom after surgery, often leading to cognitive 
and behavioral impairments [4]. Therefore, identifying 
potential biomarkers and the mechanisms underlying 
DRE patients with mTLE is crucial for improving epilepsy 
treatment.

Over the past decade, metabolomics has been 
extensively utilized in the fields of disease diagnosis, 
pathophysiological mechanism, and therapy [5]. Non-
targeted metabolomics is a high-throughput technique 
that comprehensively and rapidly identify metabolites 
changes within organisms [6, 7]. However, extracting 
relevant disease pathways from this vast amount of data 
remains a challenge. Gene Expression Omnibus (GEO) 
datasets can complement metabolomics by providing 
insights into intricate disease mechanisms, improving the 
understanding of diseases as a whole [8].

In this study, as shown in Fig.  1, we integrate non-
targeted metabolomics with bioinformatics to explore 
potential pathways of mTLE with DRE. Unlike previous 
non-targeted metabolomics studies in clinical epilepsy 
research [9], we conducted a metabolomics analysis of 
the buffy coat.

This study aims to perform a comprehensive analysis 
of the buffy coat in mTLE DRE patients and non-
neurological disease patients. We hope that this study 
will offer new strategies and insights for the diagnosis 
and treatment of drug-resistant mesial temporal lobe 
epilepsy.

Materials and methods
Characteristics of the patients
mTLE patients were enrolled from the Second Affiliated 
Hospital of Nanchang University between January to 
December 2019. These patients had been taking more 
than two ASMs for over a year without achieving seizure 
freedom [10] and were classified into the drug-resistant 
group (DRE group). They were matched with 10 patients 
without neurological diseases, treated in our hospital 
during this period, and classified as the control group 
(CON group). For both the DRE group and the CON 
group, the exclusion criteria were (1) Patients with 
metabolic disorders. (2) Patients with other neurological 
diseases aside from epilepsy. (3) Patients with blood 
system-related diseases. (4) Patients who participated in 
other clinical trials or did not provide informed consent 
form.

Acquisition and preparation of buffy coat
All participants avoided strenuous exercise and alcohol 
consumption for 24 h and did not eat or drink for 10 h 
before blood collection. The blood collection time was 
between 7 and 9 am.

In this study, 2  mL blood sample was collected from 
each participant through the venous blood sampling 
method, which was left to stand for half an hour. 
Following centrifugation at 12,000  rpm for 10  min, the 
sample was separated into three distinct layers, with the 
upper layer contained plasma, the middle layer contained 
buffy coat, and the lower layer contained red blood cells. 
We carefully removed the upper plasma layer and placed 
the buffy coat layer into a sterile test tube.

We pipetted 50  μL of the preparation, and added 300 
μL of 20% acetonitrile aqueous solution, the mixture 
was vortexed for 3  min, followed by centrifugation 
at 12,000  rpm for 10  min at 4  °C. Then, 200  μL of the 
supernatant was collected, left to stand at -20 °C for half 
an hour. And then centrifuged at 12,000 rpm for 3 min, 
pipetted 180 μL of the sample, and injected it into the AB 
TripleTOF 6600 for further analysis.

HPLC conditions and MS conditions
Each sample was analyzed using two different LC/
MS methods. One aliquot was analyzed under positive 
ion mode and separated on the T3 column (Waters 
ACQUITY Premier HSS T3 Column 1.8  µm, 2.1  mm * 
100 mm) with 0.1% formic acid in water as mobile phase 
A and 0.1% formic acid in acetonitrile as mobile phase B, 
following this gradient: the mobile phase B was increased 
from 5 to 20% over 2 min, then a rise to 60% in the next 
3  min, followed by a rise to 99% in 1  min, which was 
maintained for 1.5 min. Finally, it returned to 5% mobile 
phase B within 0.1 min and was held for 2.4 min. The MS 
conditions were set as follows: column temperature at 
40 °C, flow rate of 0.4 mL/min, injection volume of 6 μL. 
The negative ion mode used the same elution gradient as 
the positive mode.

Data acquisition was performed in information-
dependent acquisition mode with the use of Analyst TF 
Software (version 1.7.1, Sciex, Concord, ON, Canada). 
The source parameters were configured as follows: ion 
source gas 1 and ion source gas 2 at 50 psi; curtain gas at 
25 psi, temperature set to 550  °C, declustering potential 
at 60  V or − 60  V for positive or negative modes, 
respectively, and ion spray voltage floating at 5000  V 
or − 4000 V for positive or negative modes, respectively. 
The TOF MS scan settings were set as follows: mass 
range of 50–1000  Da, accumulation time of 200  ms, 
and dynamic background enabled. The product ion 
scan parameters settings were set as follows: mass range 
of 25–1000  Da; accumulation time of 40  ms, collision 
energy of 30 V or − 30 V for positive or negative modes, 
respectively, collision energy spread of 15. The resolution 
was set to UNIT, charge state to 1 + , intensity to 100 cps, 
isotopes within 4 Da excluded, mass tolerance at 50 ppm, 
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Fig. 1  Flowchart of identifying biomarkers and potential pathways in vesicles from patients with drug-resistant mesial temporal lobe epilepsy 
based on untargeted metabolomics and bioinformatics analysis
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and the maximum number of candidate ions to monitor 
per cycle was 18.

Data processing and statistical analyses
The raw data obtained from LC–MS was transformed 
into mzXML format using ProteoWizard software for 
subsequent data analysis. Peak extraction, alignment and 
retention time correction were both carried out using 
the XCMS program. The “SVR” approach was applied 
to adjust the peak parameters. Peaks with a detection 
rate ≤ 50% in any samples were excluded. Subsequently, 
potential biomarkers were identified by querying our 
laboratory’s database and publicly available databases.

The data were normalized to achieve unit variance and 
then unsupervised principal component analysis (PCA) 
was conducted in R (www.r-​proje​ct.​org). The results of 
hierarchical cluster analysis for potential biomarkers were 
displayed as heatmaps with accompanying dendrograms. 
Meanwhile, the pearson correlation coefficients between 
each samples were computed using the cor function in R 
and shown as heatmaps only. Both hierarchical cluster 
analysis and pearson correlation coefficients analyses 
were performed using the ComplexHeatmap package 
in R. The standardized potential biomarkers signal 
intensities results were displayed using a color spectrum.

For the two-group comparison, differential potential 
biomarkers were identified based on VIP (VIP > 1) and 
p-value (p < 0.05, Student’s t-test). VIP values were 
obtained from the OPLS-DA results, which included 
score and permutation plots, and were visualized by the 
MetaboAnalyst R package. Prior to OPLS-DA analysis, 
the data underwent log transformation (log2) and mean 
centering. To prevent overfitting, a permutation test with 
200 iterations was carried out to ensure robustness.

Potential biomarkers were identified and subsequently 
mapped to the KEGG Pathway database by KEGG 
database (http://​www.​kegg.​jp/​kegg/​compo​und/, http://​
www.​kegg.​jp/​kegg/​pathw​ay.​html, https://​cloud.​metwa​re.​
cn/). Significantly enriched pathways were determined 
using a hypergeometric test’s p-value for the given set of 
potential biomarkers.

Pathway enrichment based on non‑targeted metabolomics 
and bioinformatics analysis
Raw data were obtained from the Gene Expression 
Omnibus (GEO) database to enrich relevant genes based 
on specific criteria: (1) Samples must originate from 
human subjects. (2) Each group in the GEO dataset 
must contain more than three patients (n > 3). (3) The 
focus is specifically on mesial temporal lobe epilepsy. 
Gene data from each dataset were analyzed using either 
GEO2R. Common differentially expressed genes across 
the datasets were identified, and these genes were 

subsequently integrated with metabolomics data using 
MetaboAnalyst 6.0. This integration facilitated Joint 
Pathway Analysis to enrich potential metabolic pathways 
associated with the disease. Related pathways (integrated) 
were analyzed for enrichment using the Hypergeometric 
Test, with Degree Centrality as the topology measure and 
Combine queries as the integration method. Metabolic 
pathways with more than three potential biomarkers 
were selected and regarded as potential pathways, 
threshold was set arbitrarily and kept consistent across 
data sets. The selected enrichment results included the 
pathway.

Results
Characteristics of the patients
As shown in Tab. S1, the DRE group consisted of 15 
patients (10 males), with a mean age of (37 ± 15.53) years. 
In most cases, unilateral interictal discharges were noted 
in the left hemisphere. The control group consisted of 10 
patients (7 males), with a mean age of (51.6 ± 18.2) years.

Total ion chromatogram analysis
As shown in Fig. S2–4, in order to evaluate the stability 
and accuracy of HPLC conditions and MS conditions, for 
every 10 samples, a quality control sample was prepared 
and subjected to quality control analysis. As shown in 
Fig. S2, the established detection method has of high 
stability and reliability. As shown in Fig. S3, there was no 
cross-contamination between samples. As shown in Fig. 
S5 and Tab. S2, the stability of the detection process and 
the experimental data were consistent and reliable.

Principal component analysis
In order to obtain an initial understanding of the overall 
differences between metabolome sample groups and the 
magnitude of variation, PCA was performed. As shown 
in Fig. S5, regardless of whether in positive ion mode or 
negative ion mode, there was a separation trend between 
the DRE group and the CON group, and there are 
differences in the metabolome within the sample groups, 
with the quality control samples located centrally. This 
indicated that there was significant differences between 
the CON group and the DRE group for the potential 
biomarkers.

We detected ion pairs from each sample and developed 
a PCA model. Based on the PCA model, we also 
monitored the QC samples to verify the stability of the 
instrument. As shown in Fig. S6, each point represents a 
sample, and due to systematic errors in the instrument, 
the points exhibit fluctuations up and down. QC 
samples with PC1 scores within a range of plus or minus 
three standard deviations are considered to have good 
instrument stability.

http://www.r-project.org
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
https://cloud.metware.cn/
https://cloud.metware.cn/
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Orthogonal partial least squares discriminant analysis
While PCA provides a broad view of sample data, it 
may not be sensitive to some metabolites with minimal 
correlation. To address this, we performed OPLS-DA 
analysis, which amplifies the differences between CON 
and DRE groups, making it easier to identify potential 
potential biomarkers.

As shown in Fig.  2A, both the positive and negative 
spectrum conditions demonstrated clear separation 
between the CON and DRE groups, which was more 
distinct than that was observed in the PCA score plots. 
We also evaluated the predictive and explanatory 
probability of the OPLS-DA. As shown in Fig.  2B, the 
positive and negative spectra models both showed 
Q2 > 0.5 and Q2 > R2X, indicating that the OPLS-DA 
model we established had strong predictive ability. 
By performing 200 random permutation tests with 
OPLS-DA, the final result showed that p = 0.03 < 0.05, 
further confirming the reliability of the model. 
Furthermore, we developed S-plot, as shown in Fig. 2C, 
the points lower left corners and closer to the upper right 
represent significant differences between two groups. 
Red points represent metabolites with a VIP > 1 and 
green points represent metabolites with a VIP ≤ 1. Only 
metabolites with a VIP > 1 were considered potential 
biomarkers.

Potential biomarkers identification
As shown in Fig. S7, a total of 3,244 potential biomarkers 
were identified, comprising 457 up-regulated metabolites 
and 270 down-regulated metabolites. We further selected 
biomarkers with p < 0.05 (Student’s t-test) and VIP > 1. 
Under these conditions, as shown in Table  1, a total of 
27 potential biomarkers were identified, comprising 7 
down-regulated and 8 up-regulated potential biomarkers. 
As shown in Fig.  3A, to visualize the distribution and 
variation of these potential biomarker across different 
samples we constructed heatmaps..

Potential biomarkers enrichment analysis and pathway 
analysis
We conducted KEGG pathway enrichment, as shown 
in Fig.  3B, where the dot size reflects the number of 
potential biomarkers enriched in the respective pathway, 
and the closer the P value is to 0, the more pronounced 
the enrichment effect. Finally, a total of 9 pathways 
potentially associated with drug-resistant epilepsy were 
identified.

Potential pathway enrichment
To further enrich the metabolic pathways, an integrative 
analysis was conducted by processing data through 
MetaboAnalyst 6.0. As shown in 3C, this analysis 

revealed a total of 9316 common significant genes 
across 3 GEO datasets (GSE127871, GSE217726 and 
GSE134697). By integrating this data with the potential 
biomarkers, we identified 84 potential metabolic 
pathways related to temporal lobe epilepsy (See 
supplementary). To enhance the reliability of the pathway 
analysis, only pathways enriched with more than three 
biomarkers were considered. Using this criteria, we found 
that three pathways were significantly enriched: purine 
metabolism, tryptophan metabolism, and aminoacyl-
tRNA metabolism closely linked to the TLE and drug-
resistant epilepsy.

Discussion
This study specifically investigated changes of 
metabolites in the buffy coat, which is distinct from 
the more commonly used samples such as blood, 
urine, and cerebrospinal fluid samples in non-targeted 
metabolomics research in epilepsy. In fact, a total of 
60% of studies typically used blood samples, including 
serum and plasma [9]. However, there is no report on 
the metabolomics of the buffy coat, which comprises 
platelets, lymphocytes, monocytes, and granulocytes. 
These metabolites are closely associated with immune 
cells and may play a role in mediating peripheral immune 
responses, which in turn interact with CNS immunity in 
epilepsy [11].

Our analysis of non-targeted metabolomic analysis 
was performed in patients with mTLE and drug-
resistant epilepsy in this study, ultimately identifying 
27 potential biomarkers from buffy coat. Further 
investigation into these potential biomarkers revealed 
that 7 of them are amino acids and derivatives (l-Lysine, 
Glutamine, l-Glutamic acid, Asparagine, Kynurenic 
acid, l-Phenylalanine, l-Tryptophan) and 3 are 
organic acids and derivatives (1,6-di-O-phosphono-
beta-d-fructofuranose, (S)-2-acetamido-6-oxopimelic 
acid, 3-Isopropylmalic acid). These findings align 
with previous research from both animal and clinical 
studies, using different samples such as blood, urine 
and cerebrospinal fluid, where amino acids and organic 
acid derivatives were found to be potential biomarkers 
for epilepsy [9]. Our results indicate that the potential 
biomarkers identified from buffy coat may also be similar 
to traditional samples in influencing the development 
of DRE. As shown in Table 2, the orange cells represent 
potential biomarkers involved in pathways or there is 
literature related to potential biomarkers and epilepsy 
based on metabolomics or DRE. Based on a review of 
the available literature, it was found that 15 potential 
biomarkers have been documented to correlate with 
epilepsy, and 10 potential biomarkers have been 
implicated in both metabolomics and epilepsy [12–26]. 
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Fig. 2  OPLS-DA models resulting from UPLC/Q-TOF–MS spectra. A, D represents, respectively, the OPLS-DA two-dimensional graph of the DRE 
group and the CON group (red dots represent the DRE group and blue dots represent the CON group); B, E represents the permutation test 
evaluation of OPLS-DA; C, F represent the s-plot of metabolites (red dots show VIP > 1, green dots show VIP ≤ 1); A–C represents the ESI + mode; D–F 
represent the ESI- mode
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Importantly, three potential biomarkers have been 
associated with drug-resistant epilepsy (DRE). Notably, 
potential biomarkers Glutamine, Asparagine, and 
Kynurenic acid may represent robust biomarkers for 
diagnosed DRE. Biomarkers N-Acetyl-d-glucosamine, 
Inosinic acid, Xanthine, N-Acetylserotonin, and Biotin 
are being identified for the first time in metabolomics 
studies related to DRE, which could be due to the use 
of the buffy coat samples in this study. These findings 
suggest that the buffy coat provides valuable insights 
into the localized metabolic changes associated with 
DRE, offering an innovative and sensitive method for 
diagnosing the condition. After enriching potential 
biomarkers through KEGG analysis, a total of 9 
pathways were enriched (tryptophan metabolism, 
ABC transporters, protein digestion and absorption, 
aminoacyl-tRNA metabolismandpurine metabolism, 
nucleotide metabolism, biosyntheis of amino acids, 
purine metabolism, mineral absorption and central 
carbon metabolism in cancer). Further analysis with the 
GEO dataset revealed a potential association between 

drug-resistant temporal lobe epilepsy and the pathways 
of purine metabolism, aminoacyl-tRNA metabolism and 
tryptophan metabolism. It is worth noting that although 
ABC transporters were not among the final enrichment 
potential pathways, the increased expression of efflux 
transporters in the blood–brain barrier (BBB), primarily 
from the ATP-binding cassette (ABC) superfamily, 
contribute to the limited penetration of ASMs into the 
brain, thus affecting the occurrence of drug-resistant 
epilepsy [27].

As shown in Fig. 4, Glycinamide ribonucleotide (GAR) 
is downregulated, while glutamine and inosinic acid 
(IMP) are significantly upregulated in the DRE group. 
This suggests that the downregulation of the PPAT gene 
in the DRE group, as found in the GEO datasets analysis 
(GSE127871, GSE134697, and GSE217726), leads to early 
inhibition of purine synthesis. However, the availability of 
glutamine as an amino donor could compensate for and 
promote the synthesis of IMP, subsequently enhancing 
purine synthesis in DRE [28]. Additionally, the increase 
in IMP and the decrease in 2’-deoxyadenosine suggest 

Table 1  Potential biomarkers identified from ESI+ mode and ESI− mode

Num Mode Compounds Formula RT (min) Cpd_ID p VIP

1 Negative l-Lysine C6H14N2O2 0.67 C00047 0.007 1.57

2 Negative Glycinamide ribonucleotide C7H15N2O8P 0.67 C03838 0.013 1.55

3 Positive Glutamine C5H10N2O3 0.79 C00064 0.019 1.37

4 Negative N-Acetyl-d-glucosamine C8H15NO6 0.81 C00140 0.044 1.36

5 Negative 1,6-di-O-phosphono-beta-d-fructofuranose C6H14O12P2 0.83 C05378 0.013 1.50

6 Positive l-Glutamic acid C5H9NO4 0.86 C00025 0.044 1.15

7 Negative Asparagine C4H8N2O3 1.19 C00152 0.016 1.63

8 Negative Inosinic acid C10H13N4O8P 1.19 C00130 0.008 1.75

9 Negative Xanthine C5H4N4O2 1.25 C00385 0.012 1.41

10 Negative 2’-Deoxyadenosine C10H13N5O3 1.30 C00559 0.006 1.66

11 Positive (S)-2-acetamido-6-oxopimelic acid C9H13NO6 1.38 C05539 0.040 1.19

12 Positive Kynurenic acid C10H7NO3 1.44 C01717 0.033 1.18

13 Negative 2’-Deoxyinosine C10H12N4O4 1.79 C05512 0.003 1.95

14 Negative d-Allose C6H12O6 1.96 C01487 0.006 1.86

15 Positive 2’-Deoxyuridine C9H12N2O5 1.97 C00526 0.047 1.39

16 Positive 3-Isopropylmalic acid C7H12O5 1.97 C04411 0.000 1.84

17 Positive l-Phenylalanine C9H11NO2 1.97 C00079 0.001 1.99

18 Negative Tryptamine C10H12N2 2.34 C00398 0.004 1.93

19 Negative Indole-3-acetamide C10H10N2O 2.34 C02693 0.016 1.64

20 Positive l-Tryptophan C11H12N2O2 2.37 C00078 0.002 1.92

21 Positive Indole C8H7N 2.37 C00463 0.013 1.50

22 Positive 5-Methoxyindoleacetate C11H11NO3 2.37 C05660 0.001 1.99

23 Positive N-Acetylserotonin C12H14N2O2 2.37 C00978 0.007 1.74

24 Negative Adenine C5H5N5 2.38 C00147 0.002 2.20

25 Positive Biotin C10H16N2O3S 2.41 C00120 0.022 1.56

26 Positive Indoleacetaldehyde C10H9NO 2.60 C00637 0.016 1.34

27 Positive N-Methylserotonin C11H14N2O 3.05 C06212 0.005 1.69
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a restricted conversion between AMP and IMP, and 
between ATP and 2’-deoxyadenosine, thereby limiting 
the breakdown metabolism of 2’-deoxyadenosine and 
promoting the utilization of IMP. The decrease in 
xanthine in the DRE group indicates an impairment in 
the breakdown process of purine metabolism, which may 
further impact the metabolism of uric acid. High levels 
of uric acid are considered to be associated with the 
mechanisms of epilepsy onset and medication use [29], 

although it is unclear if this is due to epilepsy itself or the 
result of ASM treatment [30]. Although there are higher 
average levels of uric acid in the DRE patients compared 
to the control patients, the variability within the DRE 
group was considerable. The upregulation of inosinic 
acid, adenine, and 2’-deoxyinosine involves the recycling 
of nucleotides in purine metabolism, suggesting that cells 
in the DRE group may enhance nucleic acid repair or 
respond to increased cellular stress. It is now recognized 

Fig. 3  Potential pathways enrichment. A Heatmaps of potential biomarkers; B KEGG pathway enrichment; CVenn diagram of common genes 
from bioinformatics analysis; D Potential pathways identified after integrated analysis of metabolomics and bioinformatics analysis
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that purines affect seizures, and that ketogenic diets and 
purine metabolites like adenosine, when used in the 
treatment of DRE, can increase the sensitivity or activity 
levels of adenosine receptors [31, 32]. Overall, in the DRE 
group, there is an enhancement in purine metabolism 
and an inhibition in degradation, this dysregulation could 
potentially affect the roles of ATP and adenosine in DRE. 
As ATP and adenosine metabolites were not measured in 

this experiment, the relationship remains to be further 
analyzed.

In addition, aminoacyl-tRNA metabolism is 
suppressed in the DRE group (Fig. S8). In this study, 
potential biomarkers including l-Lysine l-Glutamic 
acid, Asparagine, l-Phenylalanine, and l-Tryptophan 
showed downregulation in the DRE group. These 
amino acids are involved in neurotransmitter synthesis, 

Table 2   Potential biomarkers involved in pathways and literature

Markers

Epilepsy Metabolomics DRE 

Tryptophan 

metabolism 

ABC 

transporters 

Aminoacyl-tRNA 

biosynthesis 

Purine 

metabolism 

Biosynthesis 

of amino 

acids 

Ref. 

1 [12]

2 
3 [13,

14]

4 [15]

5 
6 [16]

7 [17,

18]

8 [19]

9 [19]

10 
11 
12 [20]

13 
14 
15 
16 
17 [21]

18 [22]

19 
20 [23]

21 [20]

22 
23 [24]

24 [25]

25 [26]

26 
27 



Page 10 of 12Zhu et al. European Journal of Medical Research          (2025) 30:332 

potentially impacting the occurrence of drug-
resistant epilepsy [18]. GEO dataset analysis revealed 
a consistent downregulation of mitochondrial tRNA-
associated genes, such as MT-TK, MT-TE, MT-TN, 
MT-TF, and MT-TW in the DRE group. Mutations in 
these genes are linked to mitochondrial syndromes 
and have been reported in association with Refractory 
Status Epilepticus [33, 34]. The genes KARS1, EARS2, 
NARS, FARS2, FARS1, and WARS1, which load the 
respective amino acids into their corresponding tRNAs, 
constitute the essential first step in protein translation. 
Analysis of GEO data showed a downregulation of these 
genes in the epilepsy group, and the report showed 
that mutations in these genes lead to neurological 
developmental anomalies [35].Aminoacyl-

tRNA metabolism was found to inhibit protein 
synthesis and disrupt mitochondrial energy metabolism, 
influencing the development of DRE.

Tryptophan metabolism is also overall inhibited in the 
DRE group. Tryptophan metabolism is the pathway most 
closely related to epilepsy among the three pathways [36, 
37]. However, this is the first study that has implicated the 
tryptophan metabolism pathway in DRE through non-
targeted metabolomics. Tryptophan is the only precursor 
for the biosynthesis of serotonin. As shown in Fig.  4, 
the levels of serotonin metabolites (N-Acetylserotonin, 
N-Methylserotonin, 5-Methoxyindoleacetate) were 
significantly reduced in the DRE group, but there is no 
obvious difference in serotonin levels between the DRE 
and CON patients, possibly because peripheral serotonin 
cannot cross the blood–brain barrier [38]. Approximately 
90% of tryptophan is oxidized into kynurenine, the 
metabolic products of tryptophan, such as kynurenic 
acid, which has been shown to be significantly 
downregulated in DRE (p < 0.05) [39]. Tryptophan is 
metabolized into indole derivatives by microbes such 

Fig. 4  Enriched pathways and relevant potential biomarkers involved in this study. The dotted arrows mean multiple steps and the solid arrows 
mean one step between two potential biomarkers. Red potential markers indicate higher concentrations in the control group compared to the DRE 
group. Blue potential markers indicate higher concentrations in the DRE group compared to the control group. Different colored boxes represent 
different pathways
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as Clostridium sp., Bacteroides sp, and Escherichia coli 
[40, 41]. Tryptamine, indole-3-acetamide, and indole are 
also downregulated in the DRE group. Analysis of GEO 
datasets in bioinformatics reveals that the genes involved 
in tryptophan metabolism, including DDC, MAOA, 
MAOB, ALDH9A1, AOX1, and KYAT3, are significantly 
downregulated. Overall, these findings point to the 
potential role of tryptophan metabolism is inhibited 
in the DRE. Further studies are required to validate 
the biomarkers and pathways involved in this study, 
especially those that have not been previously linked to 
DRE.

Summary
This study presents the first metabolomic analysis of 
the buffy coat in drug-resistant epilepsy, identifying 27 
potential biomarkers. The integration of non-targeted 
metabolomics with available GEO datasets provides 
insights into the mechanisms of DRE, highlighting the 
pathways of purine metabolism, tryptophan metabolism, 
and aminoacyl-tRNA metabolism. These results provide 
a foundation for both biomarker discovery, and to 
enhance our understanding of the the mechanisms 
of mTLE and drug-resistant epilepsy. Further studies 
are required to validate the biomarkers and pathways 
involved in this study, especially those have never been 
reported related to epilepsy.
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