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Abstract 

Background Individuals with chronic diseases are at higher risk of sarcopenia, and precise prediction is essential 
for its prevention. This study aims to develop a risk scoring model using longitudinal data to predict the probability 
of sarcopenia in this population over next 3–5 years, thereby enabling early warning and intervention.

Methods Using data from a nationwide survey initiated in 2011, we selected patient data records from wave 
1 (2011–2012) and follow-up data from wave 3 (2015–2016) as the study cohort. Retrospective data collection 
included demographic information, health conditions, and biochemical markers. After excluding records with miss-
ing values, a total of 2891 adults with chronic conditions were enrolled. Sarcopenia was assessed based on the Asian 
Working Group for Sarcopenia (AWGS) 2019 guidelines. A generalized linear mixed model (GLMM) with random 
effects and diverse machine learning models were utilized to explore feature contributions to sarcopenia risk. The 
Recursive Feature Elimination (RFE) algorithm was employed to optimize the full Multilayer Perceptron (MLP) model 
and develop an online application tool.

Results Among total population, 580 (20.1%) individuals were diagnosed with sarcopenia in wave 1 (2011–2012), 
and 638 (22.1%) were diagnosed in wave 3 (2015–2016), while 2165 (74.9%) individuals were not diagnosed with sar-
copenia across the study period. MLP model, performed better than other three classic machine learning models, 
demonstrated a ROC AUC of 0.912, a PR AUC of 0.401, a sensitivity of 0.875, a specificity of 0.844, a Kappa value 
of 0.376, and an F1 score of 0.44. According to MLP model-based SHapley Additive exPlanations (SHAP) scoring, 
weight, age, BMI, height, total cholesterol, PEF, and gender were identified as the most important features of chronic 
disease individuals for sarcopenia. Using the RFE algorithm, we selected six key variables—weight, age, BMI, height, 
total cholesterol, and gender—achieving an ROC AUC of about 0.9 for the online application tool.

Conclusion We developed an MLP machine learning model that incorporates only six easily accessible variables, 
enabling the prediction of sarcopenia risk in individuals with chronic diseases. Additionally, we created a practical 
online application tool to assist in decision-making and streamline clinical assessments.
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Introduction
Sarcopenia, characterized by the progressive loss of 
skeletal muscle mass and strength, is increasingly 
recognized as being closely associated with a range 
of chronic diseases. Numerous cohort studies have 
demonstrated that individuals with chronic diseases, 
particularly those over the age of 60, are at an elevated 
risk of developing sarcopenia. For instance, a systematic 
review of 11 population-based studies on patients with 
heart failure revealed that the prevalence of sarcopenia 
in individuals with cardiovascular disease was ~ 34%, 
significantly higher than in healthy controls [1]. Similarly, 
a cross-sectional study of patients with type 2 diabetes 
found that the rate of sarcopenia was nearly twice as 
high compared to age-matched healthy controls [2]. 
In patients with chronic kidney disease (CKD), global 
prevalence rates for sarcopenia and severe sarcopenia 
were reported to be 24.5% and 21%, respectively, with 
approximately half of dialysis-dependent CKD patients 
affected [3]. Furthermore, patients with chronic 
respiratory and digestive diseases also exhibit a higher 
prevalence of sarcopenia [4, 5].

The relationship between sarcopenia and chronic 
diseases is likely mediated through complex mechanisms, 
including persistent inflammation, oxidative stress, 
hormonal changes, and physical inactivity. Chronic 
comorbidities often exacerbate the inflammatory milieu, 
leading to increased muscle protein degradation and 
reduced muscle protein synthesis. In chronic conditions, 
persistent elevation of pro-inflammatory cytokines 
creates a catabolic environment in skeletal muscle, 
impairing protein synthesis while enhancing protein 
degradation. This inflammatory state is characterized 
by increased levels of TNF-α, IL-6, and IL-1β, which 
activate the NF-κB signaling pathway, subsequently 
triggering muscle atrophy [6–9]. The inflammatory 
cascade extends to activating the Akt/mTOR/FoxO3a 
and other signaling pathways, further promoting protein 
breakdown and muscle wasting [10, 11]. In this process, 
the gut microbiota–muscle axis [12], and cellular death 
mechanisms [13], and enhanced activity of the ubiquitin–
proteasome [14] also play a role in the oxidative stress 
activation which further exacerbates mitochondrial 
damage and subsequent metabolic dysfunction [15]. In 
the context of diabetes, the presence of insulin resistance 
and altered growth factor signaling in chronic conditions 
such as diabetes further contributes to muscle wasting 
and weakness [16].

Conversely, sarcopenia has been shown to exacerbate 
the clinical course of several chronic diseases through 
its effects on muscle function, inflammation, and 
metabolic dysregulation. In cardiovascular disease 

(CVD), sarcopenia is associated with reduced physical 
capacity, increased frailty, and diminished ability to 
tolerate medical interventions, all of which lead to 
higher rates of hospitalization and mortality [17]. 
The bidirectional interaction between sarcopenia and 
chronic diseases underscores the importance of early 
detection and intervention.

Sarcopenia not only worsens the prognosis of chronic 
diseases but also significantly contributes to the 
increased healthcare costs and burden associated with 
these conditions. In this context, a multidisciplinary 
approach that combines physical assessments with 
laboratory biomarkers may be particularly effective 
for early identification and prediction of sarcopenia in 
patients with chronic disease.

To date, serum creatinine, cystatin C, uric acid, and 
sarcopenia index have been identified as potential 
predictors of sarcopenia in chronic respiratory 
diseases, and may also be relevant for other chronic 
conditions [18, 19]. However, most existing studies 
have primarily focused on exploring the correlation 
between these markers and sarcopenia, often 
through cross-sectional analyses. There remains a 
lack of effective and convenient predictive models 
that integrate independent predictors to forecast 
the risk of sarcopenia in individuals with chronic 
diseases. The increasing availability of large datasets 
and complex algorithms has led to the widespread 
use of machine learning for prediction in medicine. 
Notably, Guan et al. recently used XGBoost to predict 
new-onset atrial fibrillation (9.2%) across cohorts, 
significantly outperforming linear logistic regression 
[20]. Machine learning models excel at capturing non-
linear relationships and managing high-dimensional 
data without prior assumptions about variable 
interactions, making them ideal for analyzing complex 
biological markers like serum creatinine and cystatin 
C. Explainability methods such as SHAP can further 
elucidate threshold effects and complex predictor 
interactions, enhancing model understanding, as 
shown by Qiu et  al. [21]. Building on these strengths, 
the aim of our study is to predict the risk of developing 
sarcopenia over the next 3–5 years. We will achieve 
this through a prospective analysis of the large, 
longitudinal China Health and Retirement Longitudinal 
Study (CHARLS) cohort, incorporating explainable 
machine learning techniques. This approach will 
allow us to investigate physiological, biochemical, and 
inflammatory markers (e.g., total cholesterol, Cystatin 
C, C-reactive protein [CRP]) not only to develop robust 
predictive models but also to comprehensively identify 
and quantify the independent factors contributing to 
sarcopenia incidence.
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Methods
Participants enrollment and variable collection
The CHARLS is a nationally representative, high-quality 
longitudinal survey targeting individuals aged 45 and 
older in China. It collects comprehensive data across 
various domains, including health status, retirement, 
income, wealth, family structure, and social support. To 
date, five waves of data collection have been completed: 
the baseline survey in 2011, followed by biennial surveys 
in 2013, 2015, 2018, and 2021.

For this study, data from waves 1 (2011–2012) and 3 
(2015–2016) were analyzed. We focused on individuals 
with chronic diseases affecting the lungs, heart, liver, 
kidneys, digestive system, and psychiatric conditions, as 
well as those diagnosed with hypertension and diabetes. 
The dataset included demographic variables such as age, 
gender, height, weight, body mass index (BMI), education 
level, and smoking status. In addition, pulmonary 
function and laboratory test results were examined, 
including peak expiratory flow (PEF), total cholesterol, 
triglycerides, triglyceride-glucose index (TyG), calculated 
as ln(fasting triglycerides [mg/dL] × fasting glucose [mg/
dL]/2), uric acid, blood urea nitrogen (BUN), cystatin 
C, CRP, glycated hemoglobin (HbA1c), high-density 
lipoprotein cholesterol (HDL-C), and low-density 
lipoprotein cholesterol (LDL-C). These variables were 
retrospectively obtained from the CHARLS database. 
CHARLS employs a multi-stage stratified probability 
sampling method to select tens of thousands of 
respondents. Data on individual demographics (e.g., 
smoking status, education level) were collected through 
face-to-face interviews and questionnaires. Physical 
performance data (e.g., timed walk measurements, blood 
pressure) were measured using physical performance 
scales. Blood test data (e.g., BUN, CRP) were collected 
from patient blood samples and sent to hospitals for 
examination. These data are typically followed up 
and updated every 2  years, providing high-quality 
longitudinal data suitable for tracking changes over time. 
These data are typically updated and followed up every 
2  years in waves, providing high-quality longitudinal 
tracking data. Notably, considering that only the 
follow-up surveys from wave 1 (2011–2012) and wave 3 
(2015–2016) included blood test indicators, we chose to 
incorporate data from these two waves. The rationale for 
selecting these variables was to include as many relevant 
variables as possible from those available in CHARLS, 
which aligns with approaches depicted in similar studies 
[22, 23].

Assessment of chronic disease
Chronic diseases were defined based on the CHARLS 
DA007 questionnaire, which asks: “Have you been 

diagnosed with [conditions listed below] by a doctor?” 
A positive response to any of the listed conditions 
was considered indicative of a chronic disease. These 
conditions include hypertension, dyslipidemia, diabetes 
or hyperglycemia, cancer or malignant tumors, chronic 
lung diseases such as chronic bronchitis or emphysema, 
liver disease, cardiac conditions including myocardial 
infarction, coronary heart disease, angina, and congestive 
heart failure, stroke, kidney disease, gastrointestinal 
diseases, psychiatric disorders, memory-related diseases 
such as Alzheimer’s, Parkinson’s, and cerebral atrophy, 
arthritis or rheumatism, and asthma.

Assessment of sarcopenia
In this study, sarcopenia was defined according to the 
2019 criteria established by the Asian Working Group for 
Sarcopenia (AWGS) [24]. The assessment of sarcopenia 
comprised three components: muscle strength, 
appendicular skeletal muscle mass (ASM), and physical 
performance. Hand grip strength was measured using 
the Yuejian WL-1000 dynamometer, with the maximum 
value from two trials on both dominant and non-
dominant hands recorded. Diagnostic thresholds were 
set at < 28 kg for men and < 18 kg for women, as specified 
by the AWGS 2019 guidelines.

Muscle mass was estimated using the ASM formula: 
ASM = 0.193 × weight (kg) + 0.107 × height (cm) – 
4.157 × sex – 0.037 × age (years) – 2.631, where sex 
was coded as 1 for males and 2 for females [25]. Low 
muscle mass was defined as height-adjusted ASM (ASM/
Height2) below the 20 th percentile of the population, 
specifically < 5.45 kg/m2 for women and < 7.15 kg/m2 
for men. Previous research has demonstrated a strong 
consistency between the ASM formula and dual-energy 
X-ray absorptiometry (DXA) in the Chinese population, 
highlighting its value in measuring ASM [26]. Physical 
performance was considered low if walking speed was 
less than 1.0 m/s or if participants required 12 s or more 
to complete the five-time chair stand test. Sarcopenia 
was diagnosed when low muscle mass was accompanied 
by either reduced physical performance or diminished 
muscle strength.

Inclusion and exclusion criterion
As illustrated in the flowchart (Fig.  1), we included 
patients diagnosed with chronic diseases as defined ear-
lier. The exclusion criteria were as follows: patients with 
missing variable values, those who did not participate in 
interviews during both wave 1 and wave 3, and individu-
als with extreme outliers (BMI > 100 or height < 100 cm). 
Consequently, 22,982 individuals were excluded from 
the cohort, resulting in a final sample of 2891 individuals 
with chronic diseases.



Page 4 of 19Rong et al. European Journal of Medical Research          (2025) 30:345 

Among these, 580 individuals were diagnosed with 
sarcopenia in wave 1 (2011–2012), and 638 were 
diagnosed in wave 3 (2015–2016), while 2165 individuals 
were not diagnosed with sarcopenia across the study 
period. Since the data were obtained from an openly 
available consortium, no written consent was required 
for this study.

Statistical analysis
The chi-square test or Fisher’s test was used for 
categorical data comparison, ANOVA or Kruskal–Wallis 
for multiple group comparisons, and t-test or Wilcoxon 
rank-sum test for two-group comparisons of continuous 
variables. The generalized linear mixed model (GLMM) 
with a random individual ID intercept was utilized to 
estimate the association between covariates and 
sarcopenia. Given that the features of each ID are 
repeated twice, the GLMM model, which accommodates 
repeated measures data, is deemed more suitable and is 

thus selected here over other linear models. The model 
can be expressed as following, where β0 is the fixed 
intercept term representing the baseline log-odds of the 
sarcopenia when the covariate Xi is zero; β1 is the fixed 
effect coefficient for the covariate Xi , quantifying its 
effect on the log-odds of the event; ui is the random effect 
for individual i, accounting for individual-specific 
deviations from the overall effect; and logit(pi) is the logit 
link function defined as log pi

1−pi
.

In our GLMM model, recognizing that the relationship 
between covariates and sarcopenia may not be strictly 
linear, we categorized continuous variables into three 
or four groups based on their quantiles (e.g., tertiles or 
quartiles), depending on the data distribution (Table S1). 
The practice of converting continuous variables into 
categorical ones can, to some extent, allow linear models 

logit(pi) = β0 + β1Xi + ui.

Fig. 1 Flowchart of inclusion and exclusion criteria. BMI body mass index
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to capture potential non-linear associations by estimating 
distinct effects for different ranges of the variable, thereby 
relaxing the strict linearity assumption. This approach 
has been commonly adopted in previous epidemiological 
research [27, 28]. The model’s fixed effects included time 
since baseline, each covariate, and the interaction terms 
between each covariate and time. The coefficient for each 
covariate within the fixed effects represents its effect 
on sarcopenia at baseline, while the coefficient for the 
interaction between each covariate and time reflects how 
the covariate’s influence on sarcopenia evolves over time.

We developed four classical machine learning 
models—K-Nearest Neighbors (KNN), Random Forest 
(RF), XGBoost (XGB), and Multilayer Perceptron 
(MLP)—to prospectively predict the probability of 
sarcopenia onset within the next 3–5 years. Among 
these, RF is a tree-based model, while XGB is both a 
tree-based and boosting model. In contrast, KNN is a 
distance-based model that classifies data points based 
on the proximity to their nearest neighbors, and MLP 
is a neural network-based model designed to capture 
complex nonlinear relationships in the data. Specifically, 
an MLP consists of interconnected nodes (neurons) 
organized in layers: an input layer, one or more hidden 
layers, and an output layer. Each connection between 
neurons carries a weight, and neurons in the hidden 
and output layers typically apply a non-linear activation 
function (sigmoid in this analysis) to the weighted sum 
of their inputs. The performance of machine learning 
models is highly dependent on the configuration of key 
hyperparameters. For instance, in the case of the MLP, 
critical hyperparameters such as the number of units in 
the hidden layer (which determines the model’s capacity 
to capture complex patterns), regularization strength 
(which controls overfitting by penalizing large weights), 
and number of epochs (which defines the number 
of training iterations) were identified and optimized 
through a subsequent Bayesian hyperparameter tuning 
process.

As shown in Fig. 1, individuals already diagnosed with 
sarcopenia at baseline were excluded from the analysis. 
The dataset was then randomly split into training and 
testing sets in a 75% to 25% ratio, ensuring similar 
distributions of both covariates and outcome variables 
across the two sets. To enhance model stability during 
training, five-fold cross-validation was applied to the 
training set.

Hyperparameter tuning for each machine learning 
model was performed using Bayesian optimization, 
starting with an initial random search of 10 evaluations 
and proceeding up to a maximum of 50 iterations. Early 
stopping was implemented if model performance did 
not improve after 10 consecutive iterations. Model 

comparison was conducted based on Receiver Operating 
Characteristic Area Under the Curve (ROC AUC), 
Precision-Recall Area Under the Curve (PR AUC), 
calibration, and five-fold cross-validation results. The 
AUC values of each pair of models were compared using 
the DeLong test method to statistically assess differences 
in performance. SHapley Additive exPlanations (SHAP) 
is a unified framework for interpreting the predictions 
of complex machine learning models by attributing 
each feature’s contribution based on principles from 
cooperative game theory. In this analysis, numerical 
variables are represented in their continuous numerical 
form rather than being categorized into quantiles. Based 
on the magnitude of the SHAP values, the contributions 
of different variables to sarcopenia are ranked from 
highest to lowest. Subsequently, recursive feature 
elimination (RFE) is performed within the optimal 
model: features are iteratively removed one by one, 
starting with the least important according to the SHAP 
ranking from the model retrained at each step. This 
process aims to obtain the highest possible AUC value, 
thereby maintaining predictive accuracy while ensuring 
model simplicity. The performance is evaluated after each 
feature removal, and when the AUC value curve versus 
the number of remaining features begins to plateau, the 
smallest feature set achieving performance close to the 
maximum is considered optimal. The RFE algorithm was 
first proposed by Guyon et al. [29]. This algorithm, owing 
to its effectiveness in identifying impactful features, 
reducing model complexity, and potentially improving 
generalization by eliminating irrelevant or redundant 
predictors while often maintaining high predictive 
performance, was subsequently applied increasingly 
in the medical field [30, 31]. The application of RFE 
here aims to optimize the machine learning algorithm’s 
feature set by addressing feature redundancy, striving 
to maintain predictive accuracy while enhancing model 
parsimony. This aligns with our main purpose in this 
research, which is to establish a convenient and precise 
model for medical utilization.

Sample size calculation was performed using the 
enrichment strategy proposed by Diggle in 2002, which 
is particularly suitable for longitudinal studies involving 
specific subpopulations or enriched cohorts, such as 
individuals with chronic diseases.

Diggle’s formula, as presented above, calculates the 
required sample size N based on several factors: the 
standard normal quantiles corresponding to the desired 
two-sided significance level 1 − α/2 and 1 − β, the pooled 

N =
2
(

u1−α/2 + u1−β

)2
s2(1+ (n− 1)ρ)

n(µ1 − µ2)
2

.
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variance  (s2), the number of repeated measurements (n), 
the within-subject correlation (ρ), and the difference 
between groups or slopes (μ₁ − μ₂). In this context, s1 and 
s2 represent the standard deviations of the two groups, 
while  n1 and  n2 denote the sample sizes of the two 
groups in the formula. For this analysis, we computed 
the required sample size using the aforementioned 
formula as implemented in the “lmmpower” package in 
R. We specified a desired power of 0.80 (setting 1 − β) 
and a significance level of 0.05 (setting α) using the 
function’s default values. We ultimately determined that 
at least 1849 samples are required for the GLMM model 
[32]. According to the guideline for the development of 
prediction models published in January 2024, at least 
1034 samples are needed to construct a predictive model 
for binary outcomes [33]. The"Tidymodels"package in 
R software version 4.4.1 was used to establish machine 
learning models, while the"lme4"package was employed 
to develop the GLMM model.

Web tool development and prediction
By iteratively eliminating features using the RFE 
algorithm, we identified six key variables—weight, 
age, BMI, height, total cholesterol, and the commonly 
included gender variable—as inputs. This approach 
achieved an ROC AUC of approximately 0.9, culminating 
in the development of a practical online application 
tool. The “shiny” package was used to design the 
webpage layout, comprising three main components: 
an introduction section outlining the tool and its 
functionalities, an input section with fields for the five 
variables, and a prediction and visualization section. 
After entering the required data and clicking the 
yellow"Predict"button, the tool automatically displays the 
predicted probability of sarcopenia along with a SHAP 
force plot, offering insights into the risk of sarcopenia 
development in individuals with chronic diseases over 
the next 3–5 years.

Results
1Baseline characteristics of individuals
A total of 2,891 individuals with chronic diseases met 
the inclusion and exclusion criteria. Among them, 580 
individuals (20.1%) were diagnosed with sarcopenia at 
wave 1 (2011–2012). By wave 3 (2015–2016), the total 
number of sarcopenia cases had risen to 638 (22.1%), 
including 146 new cases that developed in the interim, 
while 88 individuals previously diagnosed at wave 1 
had recovered (Fig.  1). Compared to non-sarcopenic 
individuals, those with sarcopenia were more likely to be 
female, older, smokers, and have lower education levels. 
They also exhibited lower weight, height, BMI, PEF, and 
lipid levels (total cholesterol, triglycerides, LDL-C), but 

higher HDL-C levels. Additionally, BUN and cystatin 
C levels were elevated compared to non-sarcopenic 
individuals. These observations align with the expected 
characteristics exhibited by individuals with sarcopenia. 
For instance, age-related physiological changes and 
hormonal differences could contribute to the risk of 
muscle loss [34]. The observed lower weight, height, 
BMI, and PEF are also directly clinically significant, as 
they inherently reflect the reduced muscle mass and 
impaired physical function, including respiratory muscle 
strength, that characterize the sarcopenic phenotype 
[35]. Interestingly, a lower prevalence of diabetes and 
reduced TyG levels were observed in the sarcopenia 
group. Furthermore, sarcopenia patients were more 
likely to have chronic lung, liver, and digestive diseases, 
but unexpectedly, they had a lower prevalence of 
hypertension and other chronic heart diseases. The 
higher prevalence of chronic lung, liver, and digestive 
diseases among those with sarcopenia is clinically 
meaningful, aligning with the understanding that these 
conditions often promote systemic inflammation, 
malnutrition, and catabolic states conducive to muscle 
wasting (Table 1).

GLMM’s fixed effects
The fixed effects of the GLMM, including the coefficients 
for each characteristic and their interaction terms with 
time, are presented in Table  S2. As for main effect, the 
multivariable GLMM analysis revealed the clinical sig-
nificance of several key factors associated with sarcope-
nia. Notably, older age and higher levels of Cystatin C, a 
marker potentially reflecting renal function and inflam-
mation, were confirmed as significant risk factors asso-
ciated with increased odds of sarcopenia. Conversely, 
protective factors were also evident: higher education 
levels, never smoking, greater height, and better PEF 
were significantly associated with lower odds of sarcope-
nia. These results align with the characteristics of sarco-
penia individuals, which are generally observed in older 
adults with poor nutrition, a higher burden of chronic 
diseases, or those affected by unhealthy lifestyle habits. 
As for the interaction effects with time, higher education 
levels, the presence of diabetes and chronic heart disease, 
non-smoking status, higher BMI, elevated levels of total 
cholesterol, triglycerides, uric acid, BUN, and CRP, gly-
cated hemoglobin, lower HDL-C, and higher LDL-C lev-
els were associated with an increased risk of sarcopenia 
(Fig. 2, Table S2, Figure S1). These results indicated that 
individuals with these characteristics may experience an 
accelerated trajectory towards developing sarcopenia 
during the follow-up. Clinically, this suggests these fac-
tors predict a faster rate of muscle health decline, beyond 
their baseline association. Biologically, the interactions 
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Table 1 Baseline characteristics of individuals with chronic diseases at wave 1 and at wave 3

Variable Wave 1 Wave 3

Feature Without 
sarcopenia 
(N = 2311)

Sarcopenia 
(N = 580)

p value Variable Feature Without 
sarcopenia 
(N = 2253)

Sarcopenia 
(N = 638)

p value

Gender Female 1014 (43.9%) 282 (48.6%) 0.045 Gender Female 995 (44.2%) 301 (47.2%) 0.191

Male 1297 (56.1%) 298 (51.4%) Male 1258 (55.8%) 337 (52.8%)

Smoking 
status

Current 616 (26.7%) 205 (35.3%)  < 0.001 Smoking 
status

Current 543 (24.1%) 188 (29.5%) 0.021

Former 223 (9.6%) 49 (8.4%) Former 398 (17.7%) 109 (17.1%)

Never 1472 (63.7%) 326 (56.2%) Never 1312 (58.2%) 341 (53.4%)

Height, m Mean ± SD 1.6 ± 0.1 1.5 ± 0.1  < 0.001 Height, m Mean ± SD 1.6 ± 0.1 1.5 ± 0.1  < 0.001

Weight, kg Mean ± SD 63.0 ± 9.8 45.7 ± 4.8  < 0.001 Weight, kg Mean ± SD 63.7 ± 10.3 45.8 ± 5.0  < 0.001

BMI, kg/m2 Mean ± SD 25.0 ± 3.5 19.4 ± 1.8  < 0.001 BMI, kg/m2 Mean ± SD 25.3 ± 3.9 19.7 ± 2.0  < 0.001

PEF, L/min Mean ± SD 294.5 ± 121.4 239.0 ± 108.4  < 0.001 PEF, L/min Mean ± SD 314.5 ± 118.3 241.5 ± 110.0  < 0.001

Total 
cholesterol, 
mg/dL

Mean ± SD 194.9 ± 38.1 190.1 ± 38.7 0.007 Total 
cholesterol, 
mg/dL

Mean ± SD 186.8 ± 36.9 182.5 ± 38.5 0.01

Triglycerides, 
mg/dL

Mean ± SD 142.9 ± 102.2 106.2 ± 67.7  < 0.001 Triglycerides, 
mg/dL

Mean ± SD 155.0 ± 93.0 110.7 ± 65.4  < 0.001

TyG Mean ± SD 8.8 ± 0.7 8.5 ± 0.6  < 0.001 TyG Mean ± SD 8.8 ± 0.6 8.5 ± 0.6  < 0.001

Uric Acid, mg/
dL

Mean ± SD 4.4 ± 1.2 4.4 ± 1.3 0.21 Uric Acid, mg/
dL

Mean ± SD 5.0 ± 1.4 4.8 ± 1.4  < 0.001

BUN, mg/dL Mean ± SD 15.6 ± 4.3 16.7 ± 5.2  < 0.001 BUN, mg/dL Mean ± SD 15.8 ± 4.5 16.5 ± 5.5  < 0.001

Cystatin C, 
mg/L

Mean ± SD 1.0 ± 0.3 1.1 ± 0.3  < 0.001 Cystatin C, 
mg/L

Mean ± SD 0.9 ± 0.2 0.9 ± 0.3  < 0.001

CRP, mg/L Mean ± SD 2.5 ± 5.5 2.7 ± 8.6 0.752 CRP, mg/L Mean ± SD 3.0 ± 6.3 2.7 ± 7.8 0.484

Glycated 
Hemoglobin, 
%

Mean ± SD 5.3 ± 0.8 5.2 ± 0.6  < 0.001 Glycated 
Hemoglobin, 
%

Mean ± SD 6.1 ± 1.1 5.9 ± 1.0  < 0.001

HDL C, mg/dL Mean ± SD 48.6 ± 13.9 57.6 ± 17.0  < 0.001 HDL C, mg/dl Mean ± SD 49.7 ± 10.9 55.8 ± 13.3  < 0.001

LDL C, mg/dL Mean ± SD 118.0 ± 35.6 112.6 ± 34.4 0.001 LDL C, mg/dL Mean ± SD 104.4 ± 29.1 100.7 ± 28.2 0.004

Age, year Mean ± SD 58.5 ± 8.7 65.6 ± 8.5  < 0.001 Age, year Mean ± SD 62.2 ± 8.5 69.7 ± 8.6  < 0.001

Education 
status

Associate 
degree

553 (23.9%) 139 (24%)  < 0.001 Education 
status

Associate 
degree

543 (24.1%) 149 (23.4%)  < 0.001

Bachelor’s 
degree

491 (21.2%) 60 (10.3%) Bachelor’s 
degree

479 (21.3%) 72 (11.3%)

Others 207 (9%) 24 (4.1%) Others 203 (9%) 28 (4.4%)

Vocational 
school

1060 (45.9%) 357 (61.6%) Vocational 
school

1028 (45.6%) 389 (61%)

Hypertension No 1347 (58.3%) 429 (74%)  < 0.001 Hypertension No 1113 (49.4%) 406 (63.6%)  < 0.001

Yes 964 (41.7%) 151 (26%) Yes 1140 (50.6%) 232 (36.4%)

Diabetes No 2063 (89.3%) 556 (95.9%)  < 0.001 Diabetes No 1899 (84.3%) 580 (90.9%)  < 0.001

Yes 248 (10.7%) 24 (4.1%) Yes 354 (15.7%) 58 (9.1%)

Chronic lung 
disease

No 2038 (88.2%) 469 (80.9%)  < 0.001 Chronic lung 
disease

No 1874 (83.2%) 462 (72.4%)  < 0.001

Yes 273 (11.8%) 111 (19.1%) Yes 379 (16.8%) 176 (27.6%)

Chronic heart 
disease

No 1841 (79.7%) 508 (87.6%)  < 0.001 Chronic heart 
disease

No 1623 (72%) 495 (77.6%) 0.006

Yes 470 (20.3%) 72 (12.4%) Yes 630 (28%) 143 (22.4%)

Chronic 
psychiatric 
disorders

No 2273 (98.4%) 572 (98.6%) 0.787 Chronic 
psychiatric 
disorders

No 2186 (97%) 620 (97.2%) 0.945

Yes 38 (1.6%) 8 (1.4%) Yes 67 (3%) 18 (2.8%)

Chronic liver 
disease

No 2219 (96%) 543 (93.6%) 0.017 Chronic liver 
disease

No 2065 (91.7%) 589 (92.3%) 0.647
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Table 1 (continued)

Variable Wave 1 Wave 3

Feature Without 
sarcopenia 
(N = 2311)

Sarcopenia 
(N = 580)

p value Variable Feature Without 
sarcopenia 
(N = 2253)

Sarcopenia 
(N = 638)

p value

Yes 92 (4%) 37 (6.4%) Yes 188 (8.3%) 49 (7.7%)

Chronic 
kidney disease

No 2111 (91.3%) 531 (91.6%) 0.94 Chronic 
kidney disease

No 1955 (86.8%) 542 (85%) 0.264

Yes 200 (8.7%) 49 (8.4%) Yes 298 (13.2%) 96 (15%)

Chronic digest 
disease

No 1586 (68.6%) 366 (63.1%) 0.013 Chronic digest 
disease

No 1338 (59.4%) 328 (51.4%)  < 0.001

Yes 725 (31.4%) 214 (36.9%) Yes 915 (40.6%) 310 (48.6%)

TyG triglyceride-glucose index

Fig. 2 Forest plot of estimates of interaction effects of different variable with time, including confidence intervals for GLMM. GLMM generalized 
linear mixed model, CRP C-reactive protein, PEF peak expiratory flow, TyG triglyceride-glucose index, BUN blood urea nitrogen, HbA1c glycated 
haemoglobin, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol
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involving conditions like diabetes and heart disease, 
alongside markers of inflammation (CRP) and metabolic 
stress (HbA1c, Uric Acid, BUN), likely reflect the ongo-
ing detrimental impact of sustained inflammation, insu-
lin resistance, and catabolism on muscle maintenance 
over time. All of which showed significant p-values (< 
0.05).

Development and evaluation of machine learning models
As outlined in the flowchart in the Methods section, 
individuals with chronic diseases who had already 
developed sarcopenia at wave 1 were pre-excluded. 
This left a total of 2311 individuals for the longitudinal 
prediction process, with 1733 allocated to the training 
set and 578 to the test set (Table S3). Given that the time 
interval between wave 1 and wave 3 is approximately 3–5 
years, the prediction model was designed to prospectively 
estimate the incidence of sarcopenia over this period.

After performing Bayesian optimization to determine 
the optimal hyperparameters for the four models, the 
primary hyperparameter results are as follows: KNN 
(number of neighbors = 20, weight function ="biweight"), 
RF (number of features to consider at each split = 6, 
number of trees = 457, minimum number of samples 
required to split a node = 48), XGB (number of features to 
consider at each split = 19, minimum number of samples 
required to split a node = 29, maximum tree depth 
= 15, learning rate = 0.00149, minimum loss reduction 
required for a split = 0.401, subsample ratio of the 
training instances = 0.908), and MLP (number of units 
in the hidden layer = 2, regularization strength = 0.0270, 
number of epochs = 405). All models’ learning curves 
demonstrated good fitting (Figure S2), indicating that 
the models effectively captured the underlying patterns 
in the data without significant overfitting or underfitting. 
This suggests that the models generalize well to unseen 
data, maintaining both high accuracy and stability during 
the training and validation phases.

Several model evaluations were conducted as follows. 
In the training set, ROC AUC and PR AUC values indi-
cated that KNN, RF, MLP, and XGB ranked from highest 
to lowest in terms of performance (Fig.  3A, C). How-
ever, in the test set, the MLP model demonstrated the 
best performance in both ROC AUC and PR AUC met-
rics (Fig. 3B, D). The DeLong test results for ROC AUC, 
presented in Table 2, confirmed that MLP outperformed 
other models, although the difference compared to the 
RF model in the test set was not statistically significant. 
The MLP model achieved its optimal cutoff value at 
0.293, with an accuracy of 0.846 on the test set. It also 
demonstrated a ROC AUC of 0.912, a PR AUC of 0.401, 
a sensitivity of 0.875, a specificity of 0.844, a Kappa value 
of 0.376, and an F1 score of 0.44. The comprehensive 

evaluation metrics are presented in Table  S4. The rea-
sons for the relatively lower PR AUC, Kappa, and F1 
scores observed here may be attributed to the inherent 
class imbalance within the dataset, which often leads to 
models predicting the majority class more frequently, 
resulting in fewer false positives and hence depressing 
these specific metrics that are sensitive to false positive 
rates. However, considering the clinical implications in 
this research, the primary focus is on ensuring that no 
potentially affected patients are missed, which justifies 
accepting a moderately higher false positive rate. This 
principle is particularly relevant in our study, considering 
the limited observation window during which individu-
als determined to be high-risk might not yet exhibit dis-
cernible symptoms. Nevertheless, there is potential for 
further improvement in our future research, in which we 
plan to explore models specifically designed for enhanced 
performance on tabular data and better handling of class 
imbalance, and utilize more advanced data pre-process-
ing techniques such as Synthetic Minority Over-sam-
pling Technique (SMOTE), Adaptive Synthetic Sampling 
(ADASYN), or related variants to better balance the class 
distribution before model training. Calibration plots 
revealed excellent consistency between predicted and 
observed outcomes for the MLP model, whereas the RF 
model showed poorer calibration (Figures  S3, S4). Fur-
thermore, based on the five-fold cross-validation results, 
the MLP model achieved the highest ROC AUC (Figure 
S5A) and PR AUC (Figure S5B), indicating superior sta-
bility and accuracy. Consequently, we concluded that 
the MLP model with two units in the hidden layer was 
the best-performing model in our study. Detailed hyper-
parameter tuning results for the MLP model are visual-
ized in Figure S6, while the neural network structure is 
illustrated in Figure S7. Several potential reasons could 
explain the MLP’s stronger performance in this context. 
Sarcopenia’s multifactorial nature likely involves com-
plex, non-linear relationships and high-order interactions 
between diverse predictors. MLPs excel at capturing such 
patterns through their interconnected layers and non-
linear activation functions, potentially modeling smooth 
or global relationships more effectively than the axis-
aligned partitions inherent in tree-based models like RF 
and XGB.

SHAP‑based feature importance ranking and dependence 
plot
Based on the trained MLP model, we calculated and 
visualized the SHAP values using the"shapviz"package 
(https:// cran.r- proje ct. org/ web/ packa ges/ shapv iz/), 
as shown in Fig.  4. Weight, age, BMI, height, total cho-
lesterol, PEF, and gender were identified as the most 
important features (Fig. 4A, B). The association between 

https://cran.r-project.org/web/packages/shapviz/
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characteristics and sarcopenia among individuals with 
chronic diseases was not a simple linear relationship. The 
probability of sarcopenia increased sharply when weight 
dropped below approximately 60 kg, while it remained 
stable for BMI values above 60. Similarly, sarcopenia risk 
rose significantly when age exceeded 60 years or BMI fell 
below 24 kg/m2, but remained stable when age was below 
60 years or BMI was above 24 kg/m2.

Additionally, BUN levels above 30 mg/dL and HDL-C 
levels exceeding 50 mg/dL were associated with a nota-
ble increase in sarcopenia probability, with no significant 
decrease observed otherwise. Total cholesterol, cystatin 
C, triglycerides, and CRP demonstrated a positive linear 
relationship with sarcopenia risk, whereas height, LDL-C, 
and TyG showed a negative linear relationship (Figs. 4B, 
5). Furthermore, characteristics such as male gen-
der, lower education levels, smoking, chronic digestive 

Fig. 3 ROC and PR AUC plots for machine learning models. ROC AUC plots for the training set (A) and test set (B), along with PR AUC plots 
for the training set (C) and test set (D), as generated by the machine learning models.KNN K-Nearest Neighbors, RF random forest, XGB XGBoost, MLP 
multilayer perceptron
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diseases, chronic heart disease, and diabetes were associ-
ated with an elevated risk of sarcopenia (Fig. 6).

RFE algorithm for simplifying the MLP full model
In this section, the RFE algorithm was applied to simplify 
the MLP full model by iteratively removing less impor-
tant features based on their SHAP values. We recorded 
the ROC AUC value in the test set after each iteration to 
examine the trend of ROC AUC as the number of fea-
tures decreased. Notably, three key feature count thresh-
olds—5, 12, and 17—marked significant improvements in 
ROC AUC, as shown in Fig. 6, where the values reached 
0.89, 0.91, and 0.924, respectively. After reaching 17 fea-
tures, the ROC AUC plateaued, indicating no further 
performance gains with additional features. Based on this 
curve, we concluded that retaining only the top five fea-
tures—weight, age, BMI, height, and total cholesterol—
along with the common characteristic of gender, enables 

the MLP model to achieve a satisfactory level of accuracy 
while maintaining a simplified structure (Fig. 7).

Web tool development and prediction
We utilized an MLP model consisting of only five vari-
ables—weight, age, BMI, height, and total cholesterol—
selected through the RFE algorithm based on the most 
important contributors identified by SHAP analysis. As 
shown in Fig. 8, a web-based tool was developed to eas-
ily and accurately predict the probability of sarcopenia 
occurrence over the next 3–5 years. The website is eas-
ily accessible to everyone at https:// sasuki. shiny apps. io/ 
wutia owu2/. After entering the required data and click-
ing the yellow"Predict"button, the tool automatically dis-
plays the predicted probability of sarcopenia along with a 
SHAP force plot. The SHAP force plot provides a detailed 
explanation of how each input variable contributes to 
the predicted probability, helping users understand the 

Table 2 DeLong test results for comparing ROC AUC between models

KNN K-nearest neighbors, RF random forest, XGB XGBoost, MLP multilayer perceptron

Train set Test set

Model comparison p value Z statistic Model comparison p value Z statistic

KNN vs RF 1.28E−09 6.06 KNN vs RF 0.07 − 1.77

KNN vs XGB 2.27E−20 9.24 KNN vs XGB 0.12 − 1.53

KNN vs MLP 7.29E−11 6.51 KNN vs MLP 0.003 − 2.92
RF vs XGB 4.80E−17 8.39 RF vs XGB 0.577 0.55

RF vs MLP 5.17E−07 5.01 RF vs MLP 0.12 − 1.51

XGB vs MLP 5.47E−06 − 4.54 XGB vs MLP 0.004 − 2.84

Fig. 4 SHAP results of the MLP model: feature importance bar plot (A) and beeswarm plot (B)

https://sasuki.shinyapps.io/wutiaowu2/
https://sasuki.shinyapps.io/wutiaowu2/
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specific factors driving the sarcopenia risk for an indi-
vidual with chronic diseases. This offers both a predic-
tive and interpretive framework for risk assessment and 
decision-making.

Discussion
Sarcopenia is increasingly recognized as a critical 
prognostic factor in patients with chronic diseases. This 
muscle-wasting syndrome amplifies the clinical burden 
and is associated with diminished functional capacity, 
higher hospitalization rates, and an elevated risk of 
complications. Due to the relative difficulty in obtaining 

longitudinal data, previous studies have predominantly 
relied on cross-sectional analyses, which are often 
descriptive and lack both systematic exploration and 
predictive value. This study conducted a comprehensive 
investigation into the factors influencing the future 
development of sarcopenia in individuals with chronic 
conditions, providing valuable insights into its predictive 
determinants.

Machine learning models demonstrate superior 
performance in sarcopenia prediction compared 
to conventional statistical approaches. Seok et  al. 
utilized large-scale national health data from Korea, 

Fig. 5 SHAP results for continuous variables in the MLP model
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incorporating comprehensive health characteristics 
and objectively measured physical activity intensity 
through validated questionnaires in older adults. Their 
analysis revealed limitations of logistic regression in 
handling complex feature interactions, achieving a lower 
predictive accuracy (AUC: 0.839) than a deep neural 
network (DNN) model (AUC: 0.869) [36]. Similarly, in a 
cross-sectional predictive analysis, Kim et al. utilized the 
same national database, which included 1597 individuals 
(29%) with sarcopenia. Their findings demonstrated 
that logistic regression was outperformed by more 
advanced machine learning models (AUC: 0.85 vs. 0.93) 
in diagnosing sarcopenia [37]. Although these studies 
achieved promising predictive performance, they were 

limited to cross-sectional analyses, which primarily 
reinforced the predictive value of BMI and physical 
strength while lacking longitudinal validation. In a 
recent longitudinal follow-up study, Yin and colleagues 
similarly utilized data from 11,661 Asian individuals in 
the openly accessible CHARLS dataset to develop a deep 
learning model based on common functional capacity 
(FC) variables. Their gradient boosting classifier (GBC) 
model, which incorporated 23 common FC features, 
achieved an AUC of 0.831 in a cross-sectional setting and 
0.833 in a longitudinal setting [35]. Yin’s study produced 
SHAP results similar to ours, indicating that weight, age, 
and height were among the most significant predictors 
of sarcopenia. By replacing FC variables such as jogging 

Fig. 6 SHAP results for categorical variables in the MLP model
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1  km and lifting 5  kg with readily available serological 
test, such as lipid profiles and renal function, our model 
achieved an accuracy of 0.846, a ROC AUC of 0.912, a PR 
AUC of 0.401, a Kappa value of 0.376, and an F1 score 
of 0.44. The lower PR AUC, Kappa, and F1 scores are 
likely due to dataset class imbalance, causing models to 
favor the majority class and thus reduce false positives, 
affecting these FP-sensitive metrics. Clinically, however, 
the priority is minimizing false negatives (missing 
affected patients), which warrants accepting a higher 
false positive rate, particularly relevant due to the limited 
observation window for symptom onset. Future work 
plans to address this by employing models better suited 
for imbalanced tabular data and utilizing oversampling 
techniques like SMOTE/ADASYN. Overall, these metrics 
slightly outperform Yin’s model and are particularly 
notable for using only six easily obtainable clinical 
features: weight, age, BMI, height, total cholesterol, 
and gender. The risk assessment tool developed in this 
study utilizes a limited set of easily obtainable variables 
to effectively identify high-risk individuals with chronic 

diseases who may develop sarcopenia. Accessible 
through a user-friendly web interface, this tool prompts 
users to adopt preventive interventions such as tailored 
exercise regimens, increased intake of amino acids 
and vitamin D, and other evidence-based measures 
to mitigate sarcopenia risk. Notably, while this tool 
prioritizes sensitivity in detecting at-risk populations 
(resulting in a higher false-positive rate), we recommend 
that all identified individuals be considered high-risk and 
encouraged to pursue proactive clinical interventions, 
including medical consultations.

Apart from height, weight, BMI, age, and gender, 
which demonstrated strong predictive value for sar-
copenia—consistent with Yin’s study and previous 
research [35, 38, 39]—our study also uncovered sev-
eral additional intriguing findings, as outlined below. 
Through the main effects analysis of the GLMM, ele-
vated cystatin C levels, along with lower uric acid and 
BUN levels, were identified as risk indicators for sar-
copenia. This finding is consistent with several cross-
sectional studies that have reported similar directional 

Fig. 7 RFE algorithm-based streamlined model using SHAP importance from the MLP model. RFE recursive feature elimination
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effects of renal function markers on sarcopenia [40–
43]. However, when examining the interaction effects 
of these characteristics with time (wave), we found that 
lower cystatin C levels, higher uric acid, and higher 
BUN levels were correlated with an increased risk of 
sarcopenia. The opposing directions of the main effects 
and the interaction effects of characteristics with time 
in the GLMM suggest a dual role of renal function-
related indicators in sarcopenia. Elevated cystatin C 
levels could signify declining renal function, which cor-
relates with muscle wasting and the progression of sar-
copenia [44, 45]. Lower uric acid and BUN levels might 
reflect poor nutritional status or insufficient protein 
intake, leading to reduced muscle synthesis and mass, 
which are hallmarks of sarcopenia [46–48]. On the 
other hand, cystatin C, as a cysteine protease inhibi-
tor, plays a role in regulating oxidative stress; thus, 
its reduction may indicate compromised antioxidant 
capacity and chronic inflammation, further contribut-
ing to sarcopenia development over time [49, 50]. Fur-
thermore, chronic inflammation can elevate uric acid 
and BUN levels, exacerbating protein catabolism and 
muscle degradation. Additionally, the elevation of CRP, 
which is positively associated with sarcopenia, further 
supports this observation. By combining SHAP expla-
nations derived from the MLP model, we are inclined to 
note that elevated levels of cystatin C and CRP, which 

indicate heightened inflammation, as well as lower uric 
acid and BUN levels, which reflect reduced serum pro-
tein metabolism, are more valuable in predicting the 
risk of sarcopenia.

A recent Genome-wide association study suggested 
that serum lipid levels, including LDL-C and HDL-C, 
may genetically reduce the risk of sarcopenia, a find-
ing further supported by multivariate logistic regression 
analysis in the same study [51]. Using SHAP analysis, we 
observed a similar trend: when LDL-C and HDL-C lev-
els exceed their respective thresholds of 100 mg/dL and 
50 mg/dL, the risk of sarcopenia appears to decrease. 
Conversely, when total cholesterol and triglyceride lev-
els surpass their normal values of 200 mg/dL and 150 
mg/dL, respectively, the risk of sarcopenia shows a lin-
ear increase. The PKB/Akt and mTORC1 pathways play 
a crucial role in this process [52, 53]. Elevated levels of 
total cholesterol and triglycerides are typically associated 
with insulin resistance and chronic systemic inflamma-
tion, leading to metabolic disturbances, intramuscular 
fat infiltration, mitochondrial dysfunction, and increased 
reactive oxygen species (ROS) production, which accel-
erate muscle degradation and heighten the risk of sar-
copenia [54]. Moreover, the triglyceride-to-HDL-C ratio 
(TG/HDL-C) has been identified as a potential marker of 
insulin resistance and sarcopenia, further underscoring 

Fig. 8 Web calculator for the streamlined MLP model
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the distinct roles of different lipid components in muscle 
metabolism and health [55].

Among individuals with chronic diseases, the 
interaction effect of diabetes with time and the MLP-
based SHAP analysis both demonstrated that diabetes is 
closely and positively associated with an increased risk of 
sarcopenia. In diabetic patients, the actions of GLP-1 and 
GIP on pancreatic β-cells are impaired, leading to reduced 
insulin secretion and complicating glycemic control. This 
reduction in insulin secretion further weakens the PI3 K/
Akt/mTOR pathway, negatively impacting muscle protein 
synthesis [56, 57]. Moreover, diabetes is often associated 
with a chronic inflammatory state, marked by elevated 
levels of inflammatory cytokines such as TNF-α and IL-6. 
These cytokines activate the NF-κB pathway, enhancing 
the ubiquitin–proteasome system (UPS) activity and 
accelerating muscle protein degradation [58]. In such 
patients, medications like GLP-1 receptor agonists 
(GLP-1 RAs) and SGLT2 inhibitors (SGLT2i) may help 
counteract insulin resistance-induced muscle atrophy by 
inhibiting myostatin expression and activating the PI3 K 
pathway. Additionally, a healthy diet, adequate protein 
and energy intake, and regular exercise are strongly 
recommended to reduce the risk of sarcopenia [59]. 
Other chronic diseases, such as chronic digestive and 
heart diseases, also showed significantly higher SHAP 
values for sarcopenia compared to those without these 
conditions. Therefore, it is also essential to implement 
tailored nutritional planning for individuals with these 
conditions.

This study has several limitations. First, as it is based 
on data from a single center, the developed model 
may be subject to inevitable population biases. To 
address this, further studies with larger and more 
diverse sample sizes are necessary. Second, although 
the neural network model we developed demonstrates 
high accuracy, sensitivity, and specificity, other metrics 
such as positive predictive value, PR AUC, and F1 
score are not yet optimal. Furthermore, compared to 
gold-standard methods such as Dual-energy X-ray 
Absorptiometry (DXA), the ASM formula’s estimated 
values may exhibit certain biases. This formula derives 
muscle mass estimates through a regression model 
rather than directly measuring skeletal muscle mass, 
which may not fully capture individual variability 
or the specific characteristics of our study cohort—
particularly in individuals with chronic diseases, which 
can independently alter body composition. Additionally, 
some potential confounders, such as nutritional intake 
and medication use, were not adequately accounted for. 
Patients with missing values for certain features were 
also excluded, inevitably introducing selection bias and 
confounding bias. Consequently, the generalizability 

of this study requires further validation through 
longitudinal studies in diverse ethnic and larger 
populations. Third, some discrepancies were observed 
between the GLMM model and the SHAP model for 
certain features, such as LDL-C. These discrepancies 
probably reflect the difference between SHAP capturing 
complex ML model behavior and the GLMM’s linear 
framework. This highlights that predicting sarcopenia is 
not straightforward and suggests that future longitudinal 
studies providing richer, more detailed follow-up data 
would likely substantially improve machine learning 
prediction accuracy. Nevertheless, the web tool 
developed in this research indeed provides a longitudinal 
prediction scheme for sarcopenia in individuals with 
chronic diseases, which is consistent with biological and 
medical principles. We believe this tool holds significant 
value for early warning of high-risk populations and 
encouraging them in advance to pursue preventive 
measures, such as medication or exercise.

Conclusion
This study utilized data from the Asian Follow-up 
Database, comprising 2891 individuals with chronic 
diseases, all of whom had follow-up data available for 
both wave 1 and wave 3. Weight, age, BMI, height, and 
total cholesterol were identified as the most significant 
predictors of sarcopenia risk within the following 3–5 
years in patients with chronic diseases. Specifically, 
individuals with a weight below 60 kg, age over 60 
years, BMI less than 24 kg/m2, height under 1.6 m, or 
total cholesterol exceeding 200 mg/dL were found to 
have an increased risk of developing sarcopenia. We 
recommend that individuals with these high-risk factors 
be prioritized for targeted health warnings and proactive 
interventions. The full model, developed using the best-
performing MLP model, achieved a ROC AUC of 0.912, 
PR AUC of 0.401, sensitivity of 0.875, specificity of 
0.844, a Kappa value of 0.376, and an F1 score of 0.44 
on the test set. A streamlined model developed based 
on longitudinal follow-up data provides an accurate and 
convenient tool for the early prediction of sarcopenia. 
This model, created using the RFE algorithm with only 
weight, age, BMI, height, total cholesterol, and gender as 
inputs, achieved a ROC AUC of approximately 0.9. This 
streamlined tool was further developed into a web-based 
calculator for practical use (accessible at https:// sasuki. 
shiny apps. io/ wutia owu2/). Individuals identified as high-
risk by this early warning model should pay increased 
attention to their potential future risk of sarcopenia. We 
recommend implementing proactive interventions, such 
as encouraging more frequent and targeted physical 
activity, to mitigate this risk effectively.

https://sasuki.shinyapps.io/wutiaowu2/
https://sasuki.shinyapps.io/wutiaowu2/
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Abbreviations
ADASYN  Adaptive synthetic sampling
Akt  Protein kinase B (Part of signaling pathway)
ANOVA  Analysis of variance
ASM  Appendicular skeletal muscle mass (kg/m2 (when height-

adjusted: ASM/Height2))
AUC   Area under the curve
AWGS  Asian Working Group for Sarcopenia
BMI  Body Mass Index (kg/m2)
BUN  Blood urea nitrogen (mg/dL)
CHARLS  China Health and Retirement Longitudinal Study
CKD  Chronic kidney disease
CRP  C-reactive protein (mg/L)
CVD  Cardiovascular disease
DNN  Deep neural network
DXA  Dual-energy X-ray absorptiometry
FC  Functional capacity
FoxO3a  Forkhead box protein O3a (part of signaling pathway)
GBC  Gradient boosting classifier
GIP  Glucose-dependent insulinotropic polypeptide
GLMM  Generalized linear mixed model
GLP-1  Glucagon-like peptide-1
GLP-1 RAs  Glucagon-like peptide-1 receptor agonists
HbA1c  Glycated hemoglobin (%)
HDL-C  High-density lipoprotein cholesterol (mg/dL)
IL-1β  Interleukin-1 beta
IL-6  Interleukin-6
KNN  K-nearest neighbors
LDL-C  Low-density lipoprotein cholesterol (mg/dL)
METS-IR  Metabolic score for insulin resistance
MLP  Multilayer perceptron
mTOR  Mammalian target of rapamycin (part of pathway)
NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells
NHANES  National Health and Nutrition Examination Survey
PEF  Peak expiratory flow (L/min)
PI3 K  Phosphoinositide 3-kinase (part of signaling pathway)
PR AUC   Precision-recall area under the curve
RF  Random forest
RFE  Recursive feature elimination
ROC AUC   Receiver operating characteristic area under the curve
ROS  Reactive oxygen species
SGLT2i  Sodium-glucose cotransporter 2 inhibitors
SHAP  SHapley Additive exPlanations
SMOTE  Synthetic minority over-sampling technique
TG/HDL-C  Triglyceride-to-HDL-C ratio (ratio)
TNF-α  Tumor necrosis factor-alpha
TyG  Triglyceride-Glucose Index (ln(fasting triglycerides [mg/

dL] × fasting glucose [mg/dL]/2))
UPS  Ubiquitin-proteasome system
XGB  Extreme gradient boosting
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