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Abstract 

Background  There is no standard practice for intensive care admission after non-small cell lung cancer surgery. In 
this study, we aimed to determine the need for intensive care admission after non-small cell lung cancer surgery 
with deep learning models.

Methods  The data of 953 patients who were operated for non-small cell lung cancer between January 2001 
and 2023 was analyzed. Clinical, laboratory, respiratory, tumor’s radiological and surgical features were included 
as input data in the study. The outcome data was intensive care unit admission. Deep learning was performed 
with the Fully Connected Neural Network algorithm and k-fold cross validation method.

Results  The training accuracy value was 92.0%, the training F1 1 score of the algorithm was 86.7%, the training F1 0 
value was 94.2%, and the training F1 average score was 90.5%. The test sensitivity value of the algorithm was 67.7%, 
the test positive predictive value was 84.0%, and the test accuracy value was 85.3%. Test F1 1 score was 75.0%, test F1 
0 score was 89.5%, and test F1 average score was 82.3%. The AUC in the ROC curve created for the success analysis 
of the algorithm’s test data was 0.83.

Conclusions  Using our method deep learning models predicted the need for intensive care unit admission 
with high success and confidence values. The use of artificial intelligence algorithms for the necessity of intensive care 
hospitalization will ensure that postoperative processes are carried out safely using objective decision mechanisms.
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Background
Lung cancer is one of the most frequently diagnosed 
and leading causes of cancer-related deaths worldwide. 
[1, 2] Non-small cell lung cancer (NSCLC) accounts for 
approximately 85% of lung cancer diagnoses, while small 
cell lung carcinoma accounts for approximately 15% [3]. 
Risk factors for lung cancer include smoking, exposure to 
asbestos, family history of lung cancer, history of chronic 
lung disease, exposure to radiation, toxic substances, 
such as polycystic aromatic hydrocarbons, heavy metals, 
and radon gas [4–6]. Electronic cigarette use has been 
identified as a factor in the development of lung adeno-
carcinoma in animal studies. [4, 7]

The 8th TNM staging is used in the staging of non-
small-cell lung carcinoma [8]. Size and characteristics 
of the tumor (tx, T0, T1a(mi), T1, T2, T3, T4), charac-
teristics of the lymph node (Nx, N0, N1, N2, N3), and 
distant metastasis status (M0, M1a, M1b, and M1c) are 
examined under the heading of staging [8]. In early stage 
NSCLC, the gold standard treatment is surgery if there 
are no contraindications in terms of pulmonary functions 
[9]. Multidisciplinary treatment options come to the fore 
in the locally advanced-stage patient group [10]. Surgi-
cal treatment options come to the fore following direct 
surgery or neoadjuvant chemotherapy, immunotherapy, 
and/or radiotherapy modalities. [11, 12]

The need for an intensive care stay after surgery is 
one of the reasons why lung cancer surgery is among 
the special surgeries [13, 14]. In our clinical practice, 

the need for intensive care admission is decided by 
evaluating the patient’s current clinical condition and 
planned surgery. Intensive care admission after NSCLC 
surgery is required in patients who require close moni-
toring and are at risk of major complications [15]. 
Patients who require surgery due to NSCLC are gener-
ally a high-risk patient group accompanied by various 
comorbid conditions, such as heavy smokers, a history 
of coronary artery disease, and a history of COPD [16]. 
The need for intensive care admission increases with 
the presence of accompanying comorbid conditions, 
and ASA classification (American Society of Anes-
thesiologists), CCI risk index (Charlson Comorbidity 
Index), cardiac risk index, and pulmonary risk indexes 
are used in evaluation (Supplementary Tables S1, S2, 
S3, S4) [16–21]. In clinical practice, factors such as the 
patient’s additional comorbid conditions, respiratory 
function data, need for mechanical ventilation, and 
postoperative hemodynamic instability are evaluated as 
factors related to the patient in determining the need 
for postoperative intensive care unit admission [22, 23]. 
For surgical procedure risk factors, intraoperative com-
plications and the risk posed by surgery are also taken 
into account [22, 23]. In addition, the surgeon, anesthe-
sia team, and hospital experience are also important for 
the patient’s ward or intensive care unit follow-up [22, 
23]. While the need for postoperative intensive care 
unit admission after NSCLC surgery is important in 
terms of cost management, length of hospital stay, and 
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nosocomial infection management, there is no objec-
tive evaluation standardization [23, 24]. Routine post-
operative intensive care unit admission to every patient 
who undergoes surgical resection for NSCLC will result 
in inefficient use of qualified infrastructure. [23, 24]

With the increasing use of artificial intelligence and 
machine learning algorithms in the field of healthcare, 
cost, time management, patient comfort, and ease of 
teaching and learning have been achieved [25]. Machine 
learning is a subgroup of artificial intelligence methods 
that tries to minimize the error between the ideal action 
and the current action based on existing data [26–28]. 
The error minimization process is carried out with the 
feedback mechanism of machine learning, and perfor-
mance improvement is achieved [26]. Algorithms are 
rules consisting of statistical techniques defined to learn 
data and map all the decisions the model can make, 
while models are mathematical equations that are the 
result of the algorithm [26]. Training data is used to train 
machine learning models, while testing data is used to 
test machine learning models after the training proce-
dure. [26]

Deep learning is a subgroup of machine learning that is 
effective in solving problems involving complex, unstruc-
tured data with multilayer neural networks [26, 29]. In 
deep learning, the dimensionality problem, which is the 
main limitation of machine learning, can be solved [26, 
30]. In deep learning, there is an input layer that receives 
data input from multiple sources and an output layer 
that produces outputs. There are many hidden layers 
between the input and output layers [26]. The number 
of intermediate layers and the number of sensors in the 
intermediate layers vary depending on the nature of the 
problem [26]. There are one or more intermediate layers 
in the multilayer artificial neural network; the weights of 
the data are variable and kept up-to-date; this variability 
is adjusted by the back propagation method according 
to the error rate obtained in the previous iteration, thus 
reducing error rates and increasing the reliability of the 
model. [26, 31]

FCNN (Fully Connected Neural Network) is an algo-
rithm consisting of many connected layers, where every 
neuron in one layer is connected to every neuron in 
the other layer, and its basic principle is backpropaga-
tion (Fig. 1) [32, 33]. There is an input layer and an out-
put layer; the intermediate layers are hidden layers, and 
although there is a connection between the layers, there 
is no connection between the neurons in the same layer. 
The aim is to have fast learning and a low error rate. 
[34–36]

This study aimed to detect the need for postoperative 
intensive care hospitalization in patients who underwent 
thoracic surgery due to lung cancer with high accuracy 

and success using artificial intelligence and machine 
learning algorithms.

Methods
Ethics committee approval was received for this study 
from the local ethics committee of our institution (Ethics 
committee number: 83045809-604.01.01-415691). After 
receiving ethics committee approval, we compiled the 
data retrospectively. All data were obtained from clinical 
patient files and the hospital database. During data col-
lection and the study, we did not perform any additional 
procedures on the patients and did not request additional 
examinations or imaging.

The study included patients who underwent lung 
resection and systematic lymph node dissection due to 
NSCLC in our clinic between 2001 and 2023. The study 
excluded patients with inaccessible data or missing infor-
mation. There were 953 patients who met these criteria.

We recorded the patients’ demographic data, including 
their age and gender. Clinical data include the presence 
of comorbidities, history of chronic obstructive pulmo-
nary disease (COPD), history of hypertension, history of 
diabetes, history of tuberculosis, presence of additional 
malignancy, history of hemoptysis, presence of excessive 
secretions, history of neoadjuvant treatment, history of 
smoking (pack x year), cardiac risk index score, pulmo-
nary risk index score, Charlson comorbidity risk index 
score, and body mass index.

Among the respiratory parameters, FVC, %FVC, FEV1, 
%FEV1, FEV1/FVC, DLCO, %DLCO, DLCO/VA, PO2, 
and PCO2 were noted. Laboratory data revealed val-
ues for hemoglobin, albumin, C-reactive protein, lactate 
dehydrogenase, leukocyte, lymphocyte, monocyte, and 
neutrophil. In PET/CT, maximum FDG uptake of the 
lymph node and tumor (lymph node SUVmax and tumor 
SUVmax values) was recorded.

We recorded information on the tumor’s location, 
the side of the lesion, the type of surgical resection 
(lobectomy, bilobectomy, pneumonectomy, wedge, seg-
mentectomy), and the type of surgical incision (open sur-
gery–thoracotomy; closed surgery–VATS, RATS).

Tumor diagnosis, tumor diameter, N lymph node sta-
tus (N0, N1, N2), and TNM stage were recorded from 
the pathology data. We recorded current parameters for 
each patient, which formed the input data. In this study, 
patients with missing data were excluded, and no impu-
tation method was applied to fill in the missing data.The 
majority of patients (88.2%) were not included as input 
data, because they belonged to the ASA 2–3 group and 
did not contribute to the model’s training. In addition, 
data such as surgery duration and blood loss, which 
are key indicators of postoperative complications, were 
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excluded to prevent overfitting and bias in the model. 
Intensive care unit admission was the outcome data.

As statistical methods, mean values, standard devia-
tions, and ratios were calculated. The SPSS® 27.00 (IBM, 
Armonk, NY, United States) program was used in statis-
tical analyses. For deep learning algorithms, the success 
of the algorithm was evaluated by calculating specific-
ity, sensitivity (recall), negative predictive value, positive 
predictive value (precision), accuracy, and F1 score. The 
F1 score is the harmonic average of precision (positive 
predictive value) and recall (sensitivity) values, which is 
an indicator of success in artificial intelligence studies. 
The model’s success value for predicting postoperative 
intensive care unit presence was shown as F1 1 (Out-
put: ICU +). The model’s success value for predicting 
postoperative intensive care unit absence was shown as 
F1 0 (Output: ICU−). The F1 average value was the aver-
age of the F1 1 and F1 0 values. It showed the presence 
or absence of intensive care hospitalizations with the 
highest optimization. The success of deep learning algo-
rithms was evaluated using the area under the curve on 

the ROC curve. The Python implementation was used for 
artificial intelligence applications (Python 3.8.2, Van Ros-
sum G, Drake Jr FL, Amsterdam, Holland). The FCNN 
(Fully Connected Neural Network) algorithm was used 
in the Python application, and k-fold cross validation was 
used to reduce randomness. 90% of the data was used for 
training and 10% for testing.

Results
Between 2001 and 2023, the average age of 953 
patients who operated on our clinic due to NSCLC was 
61.3 ± 9.8  years. 80.5% of the patients were male (767 
patients), and 19.5% were female (186 patients). 32.7% 
(312 patients) were admitted to postoperative intensive 
care units.

The data of the deep learning model created using 
the FCNN algorithm and the k-fold cross validation 
method for postoperative intensive care unit admis-
sion prediction in patients operated on for NSCLC are 
given in Table 1. For the point where the algorithm was 
most successful, the repetition step in which the F1 

Fig. 1  Schematic drawing of the fully connected neural network algorithm Input data includes clinical data, laboratory data, respiratory parameters, 
and tumor characteristics for each patient. Forward and feedback feeds establish connections between the intermediate layers. As a result, learning 
success increases. The last layer contains the output data. The number of intermediate layers and neurons varies depending on the characteristics 
of the problem and the data
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average value of the test data was the maximum was 
taken. We determined the maximum test F1 average 
value at step 1700 (Table 1).

The algorithm’s sensitivity value for the training data 
was 80.1%; the positive predictive value was 94.5%; and 
the accuracy value was 92.0% (Fig. 2). The algorithm’s 
F1 1 score for the training data was 86.7%, the F1 0 
value was 94.2%, and the F1 average score was 90.5% 
(Fig. 3).

The algorithm had a sensitivity value of 67.7% for 
the test data, a positive predictive value of 84.0%, and 
an accuracy value of 85.3% (Fig.  4). The algorithm’s 
F1 1 score was 75.0% for the test data, F1 0 score was 
89.5%, and F1 average score was 82.3% (Fig.  5). The 
algorithm’s test data success analysis produced a ROC 
curve with an area under the curve of 0.83 (AUC: 0.83) 
(Fig. 6).

Table 1  Data analysis results of the FCNN algorithm-created 
model for postoperative intensive care admission prediction. 
The algorithm’s most successful point is the 1700th step, which 
determines the maximum test F1 average value. The data 
corresponds to step 1700 of the algorithm

Train (%( Test

Specificity 97.7 93.8

Sensitivity (recall) 80.1 67.7

Negative predictive value 91.0 85.7

Positive predictive value (precision) 94.5 84.0

Accuracy 92.0 85.3

F1 1 Score 86.7 75.0

F1 0 Score 94.2 89.5

F1 Average Score 90.5 82.3

Fig. 2  Graphical representation of accuracy, positive predictive 
value, and sensitivity values for the training data of the model 
created for postoperative intensive care unit admission prediction 
with the FCNN algorithm and k-fold cross validation. (Values 
for the 1700th step, where the maximum value for the test F1 average 
score was determined, are given: training accuracy value: 92.0%, 
training positive predictive value: 94.5%, training sensitivity value: 
80.1%.)

Fig. 3  Graphical representation of F1 1, F1 0, and F1 average 
values for the training data of the model created for postoperative 
ıntensive care unit admission requirement estimation with the FCNN 
algorithm and k-fold cross validation. (Values for the 1700th 
step, where the maximum value for the Test F1 average score 
was determined, are given: training F1 1 value: 86.7%, training F1 0 
value: 94.2%, training F1 average value: 90.5%)

Fig. 4  Graphical representation of the accuracy, positive predictive 
value, and sensitivity values for the test data of the model created 
for postoperative intensive care unit admission Requirement 
estimation with the FCNN algorithm and k-fold cross validation. 
(Belonging to the 1700th step, where the maximum value for the test 
F1 Average Score was detected, values are given: test accuracy value: 
85.3%, test positive predictive value: 84.0%, test sensitivity value: 
67.7%.)

Fig. 5  Graphic representation of F1 1, F1 0, and F1 mean values 
for the test data of the model created for postoperative intensive 
care unit admission requirement estimation with the FCNN 
algorithm and k-fold cross validation. (Values for the 1700th step, 
where the maximum value was determined for the test F1 Average 
Score, are given: test F1 1 value: 75.0%, test F1 0 value: 89.5%, test F1 
average value: 82.3%)
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Discussion
Close patient follow-up is required after thoracic surgery, 
and postoperative intensive care unit admission varies 
depending on the patient’s additional comorbidities, the 
surgery performed, and the physician’s decision [16–23]. 
For this reason, an objective evaluation of the need for 
postoperative intensive care unit admission in the pre-
operative period is important in terms of cost, social, 
and medical aspects [23, 24]. In this study, the accuracy 
value of the deep learning algorithms developed for the 
prediction of postoperative intensive care unit admis-
sion requirements in the test data is 85.3%, the F1 average 
value is 82.3%, and the area under the curve in the ROC 
curve is 83%, indicating that the algorithm makes predic-
tions with high accuracy and high success values. What 
we intended to convey as high accuracy and success in 
this study is that the test F1 mean value of the model is 
82.3%, and the area under the ROC curve (AUC) is 83%. 
This value represents the combined evaluation of patients 
requiring and not requiring ICU admission and is con-
sidered highly accurate and successful due to its poten-
tial clinical contribution. We believe that this model can 
serve as a starting point for ICU admission prediction 
and AI-based decision-making.

It provides contributions such as estimating the need 
for intensive care unit admission in the preoperative 
period with objective criteria, making intensive care 
unit preparations, and preparing patients and their 
relatives for intensive care. We use the ASA classifica-
tion (American Society of Anesthesiologists), CCI risk 
index (Charlson Comorbidity Index), cardiac risk index, 
and pulmonary risk index for an objective evaluation 
of the need for intensive care unit admission [16–21]. 

Admission to the intensive care unit after thoracic sur-
gery has changed over the years. For example, while in 
the 1990s, all patients were followed in advanced inten-
sive care units after thoracic surgeries, today they are 
referred to as intermediate-level intensive care units 
(PACU, Post Anesthesia Care Unit) It is considered 
appropriate to follow up during maintenance [16, 22]. 
The increasing application of ERAS (Enhanced Recov-
ery After Surgery) protocols in thoracic surgery has led 
to a general consensus that hospitalizing patients who do 
not require intensive care units for intensive care units 
is unnecessary and may lead to additional complica-
tions [37, 38]. However, we must remember that neglect-
ing this service for patients requiring intensive care unit 
admission leads to a rise in morbidity and mortality [16, 
22]. Given these reasons, it is critical to correctly identify 
patients who require intensive care unit admission and 
those who do not.

In this study, using deep learning algorithms to detect 
patients who require and do not require intensive care 
unit admission with high accuracy and success will help 
physicians in clinical practice. Our study’s deep learning 
algorithm will objectively aid physicians in assessing the 
necessity of an intensive care unit admission during the 
preoperative period. By making comparisons simultane-
ously with physicians’ decisions, the algorithm will be 
able to improve itself further, and with the development 
of the algorithm, it will provide more support to physi-
cians in clinical practices with higher predictive power, 
higher success, and higher confidence data.

When evaluating the clinical necessity of our model, we 
observed that although the vast majority of our patients 
(88.2%) were preoperatively classified as ASA 2–3, 32.7% 
required ICU hospitalization. High ASA scores were not 
directly correlated with ICU admission, nor were low 
ASA scores directly linked to ward hospitalization. The 
test evaluation of our model demonstrates its ability to 
distinguish between patients who require ICU care and 
those who do not. We believe that our model can con-
tribute to existing clinical scoring systems.

Artificial intelligence models can prevent unnec-
essary intensive care unit admissions, prevent pos-
sible complications, and optimize the use of existing 
resources in patients identified as low risk for intensive 
care unit admission. During the preoperative period, 
patients at high risk for intensive care unit admission 
receive an objective understanding of potential risks. 
Artificial intelligence models can support physicians 
as decision-support mechanisms for intensive care 
unit admission. Our goal is to achieve clinical integra-
tion by utilizing the current model as an application 
in the future, allowing for preoperative evaluation of 
each patient. The combination of artificial intelligence 

Fig. 6  Evaluation of the success of the model created 
for postoperative intensive care unit admission prediction 
with the FCNN algorithm and k-fold cross validation with the ROC 
curve (AUC:0.83)
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assessment and clinical scores will assist physicians in 
making informed clinical decisions moving forward.

The main limitation of artificial intelligence stud-
ies is that the algorithm does not have enough data to 
provide sufficient learning. In this study, modeling was 
performed with the data of 953 patients, and it was suf-
ficient for training, but the success of the model will 
increase with the increase in data diversity and amount 
of data. Another reason why artificial intelligence appli-
cations are used less in clinical decision mechanisms 
is the presence of multiple and complex input data. In 
this study, this problem was eliminated by optimizing 
the weights and bias values of the data. Incorporating 
data from different clinical practices to better predict 
real-life data is also an important issue. Considering 
the temporality of the data, it reflects 20 years of clini-
cal experience. In fact, it is a positive situation that it 
shows wide clinical application. On the other hand, 
developing technology and innovations in patient care 
cause heterogeneity. In the future, with the simultane-
ous evaluation of artificial intelligence models and phy-
sician decisions, the success of the models will come 
closer to real-life data. In this study, although the speci-
ficity and sensitivity values were closer in the training 
model, the specificity was higher (93.8%) and the sensi-
tivity was lower (67.7%) in the test model. This perfor-
mance discrepancy represents a limitation of this study.

Conclusion
In this study, intensive care unit admission predic-
tions were made with high accuracy and confidence 
using artificial intelligence models. The artificial intel-
ligence model will assist clinicians in the decision-sup-
port mechanism for assessing the need for intensive 
care unit admission and will contribute to objective 
evaluation.
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