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Abstract 

Background  The application of machine learning (ML) in predicting the requirement for total knee arthro-
plasty (TKA) at knee osteoarthritis (KOA) patients has been acknowledged. Nonetheless, the variables employed 
in the development of ML models are diverse and these different approaches yield inconsistent predictive perfor-
mance of models. Therefore, we conducted this systematic review and meta-analysis to explore the feasibility of ML 
in identifying candidates for TKA.

Method  This study was conducted based on the preferred reporting items for systematic reviews and meta-analyses 
(PRISMA) guidelines. This study was registered on the international prospective register of systematic reviews registra-
tion database website, PROSPERO, with a unique ID: CRD 42023443948. The study subjects were patients diagnosed 
with KOA. Relevant studies were searched through PubMed, Web of Science, Cochrane, and Embase until September 
15, 2024. The c-index was used as the outcome measure. The risk of bias in the primary study was assessed by Predic-
tion model Risk of Bias Assessment Tool (PROBAST). Random or fixed effects were used for the meta-analysis.

Results  A total of 13 articles were included in this study, but only 11 articles with 25 models were eligible 
for the meta-analysis. ML models in the included studies were classified based on the source of variables, includ-
ing clinical features, radiomics, and the combination of clinical features and radiomics. In the training set, the c-index 
was 0.713 (0.628 – 0.799) for clinical features, 0.841 (0.777 – 0.904) for radiomics, and 0.844 (0.815 – 0.873) for the com-
bination of clinical features and radiomics. In the validation set, the c-index for ML models based on clinical features, 
radiomics, and the combination of clinical features and radiomics was 0.656 (0.526 – 0.786), 0.861 (0.806 – 0.916), 
and 0.831 (0.799 – 0.863), respectively. 

Conclusion  The results of this meta-analysis highlighted that the ML model is feasible in identifying candidates 
for TKA. X-ray-based ML models exhibit the best predictive performance among the models. However, there is cur-
rently a lack of high-level research available for clinical application. Furthermore, the accuracy of ML models in iden-
tifying candidates for TKA is significantly limited by the quality of modeling parameters and database architecture. 
Therefore, constructing a more targeted and professional database is imperative to promote the development 
and clinical application of ML models.
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Introduction
Knee osteoarthritis (KOA) is a chronic joint disease char-
acterized by aseptic synovitis, cartilage degeneration, 
and osteosclerosis, which cause knee pain and restrict 
individual mobility [1]. KOA is one of the leading causes 
of disability in middle-aged and older patients [2, 3]. 
Epidemiological statistics show that KOA accounts for 
approximately 85% of all osteoarthritis cases worldwide 
[4]. The incidence of KOA is approximately 40% in men 
and 47% in women, respectively [5]. As per the guidelines 
of the International Association of Osteoarthritis, stand-
ard treatment is preferred to treat KOA. However, at pre-
sent, no treatment method can suppress the progression 
of KOA.

For KOA patients who do not respond to standard 
treatment, total knee arthroplasty (TKA) is the ulti-
mate treatment to alleviate pain and improve knee joint 
function, thus enhancing the quality of the patient’s life 
[2, 6]. It is projected that there will be 3 million TKA 
cases worldwide in the next decade [7]. Despite sub-
stantial advancements in surgical techniques, prosthesis 
design, and materials for TKA, about 12.7% of patients 
have dissatisfactory outcomes and demand for revision 
TKA within 5  years after TKA surgery [8]. The com-
mon reasons for revision are infection (36.1%), aseptic 
loosening of the prosthesis (21.9%), and periprosthetic 
fractures (13.7%) [9]. Therefore, the prevention of TKA 
events should also be addressed. Moreover, it is essen-
tial to develop an effective tool to identify high-risk 
KOA patients who require TKA surgery. TKA cases can 
be delayed or even prevented by actively implement-
ing effective interventions such as health education [10], 
physical therapy [11, 12], prescription medications [13], 
and adjusting lower limb alignment [14]. However, there 
is currently a lack of such tools in clinical practice.

In recent years, the application of artificial intelligence 
in the field of health care has garnered increasing atten-
tion from scholars. Machine learning (ML), as a unique 
application in the field of artificial intelligence, presents 
a promising avenue for data analysis. Furthermore, ML 
enables computer systems to learn, predict, or make 
informed decisions through data and pattern recognition 
[15, 16]. ML has been applied in various clinical contexts, 
including the prediction of lymph node metastasis of rec-
tal cancer, colorectal cancer [17], and gestational diabe-
tes mellitus [18]. Various investigations have also devised 
multiple ML models to stratify the risk of TKA complica-
tions and identify patients in need of TKA [19, 20].

The variables employed in the development of ML 
models are diverse and can be obtained from clinical 
features, imaging examinations [X-rays, magnetic reso-
nance imaging (MRI) or ultrasound (US)], or a combi-
nation of both sources. These different approaches yield 

inconsistent predictive performance of models. There-
fore, we conducted this systematic review and meta-
analysis to explore the feasibility of ML in identifying 
candidates for TKA, providing a reference basis for for-
mulating effective preventive measures for TKA compli-
cations and evidence-based support for developing risk 
prediction tools in the future.

Methods
Study registration
This study was conducted based on the preferred report-
ing items for systematic reviews and meta-analyses 
(PRISMA) guidelines [21]. This study was registered 
on the international prospective register of systematic 
reviews registration database website, PROSPERO, with a 
unique ID: CRD 42023443948.

Eligibility criteria
The studies were selected according to the following 
inclusion criteria:

(1)	 The study subjects were patients diagnosed with 
KOA;

(2)	 A risk prediction model for TKA was completely 
constructed;

(3)	 Studies without externally validated risk prediction 
models;

(4)	 Different ML studies published on the same data-
set;

(5)	 Studies reported in English.

The following studies were excluded:

(1)	 Meta-analyses, reviews, guidelines, expert opinions, 
etc.;

(2)	 Only a differential factor analysis was conducted, 
without constructing a complete machine learning 
model;

(3)	 The following outcome indicators for predicting the 
accuracy of machine learning models were lacking: 
receiver operating characteristic (ROC), c-statistic, 
c-index, sensitivity, specificity, accuracy, recall, pre-
cision, confusion matrix, diagnostic four-grid table, 
F1 score, and calibration curve;

(4)	 Studies with a small sample size (< 30 cases).

Data sources and search strategy
PubMed, Web of Science, Cochrane, and Embase data-
bases were searched for original studies published before 
September 15th, 2024. We used a combination of subject 
terms and free words to collect relevant studies, with 
search items including ’total knee arthroplasty’, ’machine 
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learning’, ‘risk model’, and ‘prediction model’. We also 
searched for potential relevant references in the included 
studies. The retrieval strategy is provided in Additional 
File 1.

Study selection and data extraction
All retrieved studies were imported into the EndNote 
20 software (Thomson ResearchSoft, USA). We used 
both automatic markings provided by EndNote and 
manual screening to exclude duplicate studies. Then, 
irrelevant studies were eliminated based on title and 
abstract screening. Next, all qualified studies entered 

full-text screening, where two researchers (Shao and 
Liu) read all the texts and evaluated all studies based on 
the criteria. Finally, all the selected studies were cross-
checked. In case of disagreements, a third researcher 
assisted in the decision-making process. The detailed 
study selection process is presented in Fig. 1.

We also extracted key information from each eligible 
study, as follows:

(1)	  Characteristics of the study: the title, first author, 
publication year, author’s country, and study type.

Fig. 1  PRISMA flowchart detailing the systematic search process
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(2)	  Characteristics of cohorts: patient source, disease 
background, number of knee replacement cases, 
total case count, number of knee replacement cases 
in the training set, total case count in the training 
set, number of knee replacement cases in the vali-
dation set, and number of cases in the validation 
set.

(3)	  Method of generating the validation set, overfitting 
methods, missing data handling method, variable 
selection method, type of model used, and mode-
ling variables.

(4)	  Prediction parameters: ROC, c-statistic, c-index, 
sensitivity, specificity, accuracy, recall, precision, 
confusion matrix, diagnostic four-grid table, F1 
score, and calibration curve.

Risk of bias in studies
The risk of bias in the primary study was assessed by Pre-
diction model Risk of Bias Assessment Tool (PROBAST) 
[22]. PROBAST provides insights into both overall bias 
risk and overall applicability. This assessment involved a 
set of questions across four domains: participants, pre-
dictive variables, outcome, and statistical analysis. Each 
domain included 2, 3, 6, and 9 specific questions, respec-
tively, with three possible answers for each question (yes/
probably yes, no/probably no, and no information). If a 
domain contained at least one question answered as yes/
probably yes, it was categorized as “high risk”. To be clas-
sified as low risk, a domain required all questions to have 
responses of yes/probably yes. When all domains were 
deemed to be at low risk, the overall bias risk was rated 
as low. Conversely, if at least one domain was classified as 
high risk, the overall bias risk was considered high. Two 
researchers independently conducted the bias risk assess-
ment using PROBAST, followed by cross-checking upon 
completion. In case of disagreements, a third researcher 
assisted in the decision-making process.

Outcomes
The outcome is the c-index which measures the overall 
accuracy of models. The c-index ranges from 0.5 to 1. A 
value of 0.5 suggests complete randomness with no pre-
dictive value, whereas a value of 1 indicates perfect agree-
ment between the predicted results and actual outcomes 
[23]. C-index greater than 0.7 suggests that the model has 
relatively ideal accuracy.

Synthesis methods
We meta-analyzed the c-index of machine learning mod-
els. If the 95% confidence interval and standard error of 
the c-index are missing, we would estimate its stand-
ard error by referring to the study by Debray et al. [24]. 

Considering the variability in included variables and 
inconsistent parameters among different machine learn-
ing models, a random-effects model (DerSimonian and 
Laird method) was preferred to conduct the meta-anal-
ysis of the c-index. The meta-analysis was implemented 
using R version 4.2.0 (R development Core Team, Vienna, 
http://​www.R-​proje​ct.​org).

Results
Study selection
2,751 articles were initially retrieved, of which 863 dupli-
cates (769 articles by automatic tools and 94 articles by 
manual search were excluded). Then, 1824 articles were 
excluded after reviewing their abstracts and titles. The 
remaining 14 articles underwent full-text review. Finally, 
13 articles [19, 20, 25–35] were included in the study. 11 
articles with 25 models were selected for meta-analysis 
[19, 25, 27–35].

Study characteristics
The 13 articles included were published between 2019 
and 2024, with a follow-up period of 5–10 years. Regard-
ing the study location, four studies were from the USA 
[19, 25–27], one study was from Austria [20], two studies 
were from the UK [28, 29], one study was from Australia 
[30], one study was from France [31], one study was from 
Canada [32], one study was from Finland [33], and two 
studies were from China[34, 35]. In terms of data source, 
six studies were based on the Osteoarthritis Initiative 
Cohort [20, 25, 26, 31, 32, 34], two studies were based on 
the Osteoarthritis Initiative Cohort and the Multicenter 
Osteoarthritis Study databases [27, 29], one study was 
based on the Clinical Practice Research Datalink[28], 
one study was based on the MedicineInsight data set 
[30], one study was based on the Musculoskeletal Pain in 
Ullensaker study MUST [33], and two studies were based 
on radiographic and surgical data obtained from a high-
volume joint replacement practice[19, 35]. Furthermore, 
two articles [20, 26] did not provide outcome measures, 
and thus 11 articles with 25 models were included in the 
quantitative meta-analysis. Among these modeling vari-
ables, clinical features were used in four models [27, 28, 
30, 34], radiomics was used in five models [19, 27, 31, 34], 
and 16 models used both clinical features and radiomics 
[25, 27, 29, 32–34]. In radiomics, 10 models were based 
on X-ray (47.6%), four models used MRI (19.0%), six 
models used the combination of MRI and X-ray (28.6%), 
and one model used the combination of US and X-ray 
(4.8%). The study characteristics are presented in Table 1. 
The features of each model and the data extracted from 
the models are provided in Additional File 2.

http://www.R-project.org


Page 5 of 11Tian et al. European Journal of Medical Research          (2025) 30:317 	

Ta
bl

e 
1 

C
ha

ra
ct

er
is

tic
s 

of
 in

cl
ud

ed
 s

tu
di

es

N
o.

St
ud

y 
(y

ea
rs

 o
f 

pu
bl

ic
at

io
n)

Co
un

tr
y

St
ud

y 
de

si
gn

Fo
llo

w
 ti

m
e

So
ur

ce
 o

f 
da

ta
Th

e 
qu

an
tit

y 
of

 T
KA

To
ta

l q
ua

nt
it

y
To

ta
l q

ua
nt

it
y 

of
 tr

ai
ni

ng
 s

et
s

M
et

ho
d 

of
 

ge
ne

ra
tin

g 
va

lid
at

io
n 

se
t

To
ta

l 
qu

an
tit

y 
of

 
va

lid
at

io
n 

se
ts

M
et

ho
ds

 
fo

r v
ar

ia
bl

e 
sc

re
en

in
g/

fe
at

ur
e 

se
le

ct
io

n

Ty
pe

s 
of

 
m

od
el

s

1
Sh

ar
m

al
a 

Th
ur

ai
si

ng
am

 
[3

0]

A
us

tr
al

ia
Co

ho
rt

5y
M

ed
ic

in
eI

n-
si

gh
t

15
97

9(
P)

20
14

62
(P

)
20

14
62

(P
)

Bo
ot

st
ra

p
N

A
Li

te
ra

tu
re

 
re

vi
ew

, D
el

ph
i 

pr
oc

es
s

Fi
ne

–G
ra

y

2
A

hm
ad

 
A

lm
hd

ie
-

Im
ja

bb
ar

 [3
1]

Fr
an

ce
Co

ho
rt

9y
O

A
I

37
5(

P)
 /

29
1(

P)
43

82
(P

)/
42

96
(P

)
43

82
(P

)/
42

96
(P

)
C

ro
ss

-v
al

id
a-

tio
n

N
A

Li
te

ra
tu

re
 

re
vi

ew
LR

3
Ke

vi
n 

Le
un

g 
[2

5]
U

SA
Co

ho
rt

9y
O

A
I

36
4(

P)
72

8(
P)

72
8(

P)
C

ro
ss

-v
al

id
a-

tio
n

N
A

U
ni

va
ria

bl
e 

an
d 

m
ul

tiv
ar

i-
ab

le
 a

na
ly

si
s

D
L

4
D

av
id

 J.
 

H
ou

se
rm

an
 

[1
9]

U
SA

Ca
se

–c
on

tr
ol

N
A

A
 h

ig
h-

vo
lu

m
e 

jo
in

t r
ep

la
ce

-
m

en
t p

ra
ct

ic
e

N
A

N
A

N
A

Ra
nd

om
 

sa
m

pl
in

g
81

2(
P)

N
A

D
L

5
A

fs
hi

n 
Ja

m
-

sh
id

i [
32

]
Ca

na
da

Co
ho

rt
9y

O
A

I
41

3(
K)

75
89

(K
)

60
71

(K
)

Ra
nd

om
 

sa
m

pl
in

g
15

18
(K

)
La

ss
o’

s 
Co

x
Co

x,
 D

L,
 R

F, 
SV

M
, L

R

6
A

ni
ke

t A
. 

To
lp

ad
i [

26
]

U
SA

Co
ho

rt
5y

O
A

I
N

A
35

48
2(

I)
23

12
6(

I)
Ra

nd
om

 
sa

m
pl

in
g

52
41

(I)
Li

te
ra

tu
re

 
re

vi
ew

, 
m

ul
tiv

ar
ia

bl
e 

an
al

ys
is

D
L

7
A

le
ks

ei
 T

iu
lp

in
 

[3
2]

Fi
nl

an
d

Co
ho

rt
7y

M
U

ST
30

(P
)

55
7(

P)
55

7(
P)

C
ro

ss
-v

al
id

a-
tio

n
N

A
Li

te
ra

tu
re

 
re

vi
ew

, 
un

iv
ar

ia
bl

e,
 

an
d 

m
ul

tiv
ar

i-
ab

le
 a

na
ly

si
s

LR

8
D

ah
ai

 Y
u 

[2
8]

U
K

Co
ho

rt
10

y
C

PR
D

 
an

d 
M

ul
ti-

ce
nt

er

N
A

N
A

41
60

30
(P

)
C

ro
ss

-v
al

id
a-

tio
n

N
A

Li
te

ra
tu

re
 

re
vi

ew
, 

Re
co

rd
-W

id
e 

A
ss

o-
ci

at
io

n 
St

ud
y,

 
an

d 
pa

ne
l 

co
ns

en
su

s

Co
x

9
Kh

ad
ija

 
M

ah
m

ou
d 

[2
9]

U
K

Co
ho

rt
5y

O
A

I a
nd

 M
O

ST
29

7(
P)

62
91

(P
)

32
34

(P
)

In
te

rn
al

 
va

lid
at

io
n:

 
ra

nd
om

 
sa

m
pl

in
g

Ex
te

rn
al

 v
al

i-
da

tio
n:

 M
O

ST

30
57

(P
)

Li
te

ra
tu

re
 

re
vi

ew
, e

xp
er

t 
kn

ow
le

dg
e

LR
, L

A
SS

O
, 

Ri
dg

e,
 D

T,
 R

F, 
G

BM

10
St

ep
ha

n 
H

ei
s-

in
ge

r [
20

]
A

us
tr

ia
Co

ho
rt

4y
O

A
I

16
5(

P)
16

5(
P)

83
(P

)
Ra

nd
om

 
sa

m
pl

in
g

82
(P

)
Va

ria
bl

es
 

of
 in

te
re

st
 

w
er

e 
pu

bl
ic

ly
 

av
ai

la
bl

e

A
N

N



Page 6 of 11Tian et al. European Journal of Medical Research          (2025) 30:317 

Ta
bl

e 
1 

(c
on

tin
ue

d)

N
o.

St
ud

y 
(y

ea
rs

 o
f 

pu
bl

ic
at

io
n)

Co
un

tr
y

St
ud

y 
de

si
gn

Fo
llo

w
 ti

m
e

So
ur

ce
 o

f 
da

ta
Th

e 
qu

an
tit

y 
of

 T
KA

To
ta

l q
ua

nt
it

y
To

ta
l q

ua
nt

it
y 

of
 tr

ai
ni

ng
 s

et
s

M
et

ho
d 

of
 

ge
ne

ra
tin

g 
va

lid
at

io
n 

se
t

To
ta

l 
qu

an
tit

y 
of

 
va

lid
at

io
n 

se
ts

M
et

ho
ds

 
fo

r v
ar

ia
bl

e 
sc

re
en

in
g/

fe
at

ur
e 

se
le

ct
io

n

Ty
pe

s 
of

 
m

od
el

s

11
H

ar
es

h 
Re

ng
ar

aj
 

Ra
ja

m
oh

an
 

[2
7]

U
SA

Co
ho

rt
9y

O
A

I a
nd

 M
O

ST
65

0(
P)

53
07

(P
)

70
6(

P)
C

ro
ss

-v
al

id
a-

tio
n

46
01

(P
)

U
ni

va
ria

bl
e 

an
d 

m
ul

tiv
ar

i-
ab

le
 a

na
ly

si
s

A
N

N
, D

L,
 

En
se

m
bl

e 
m

od
el

12
Ya

ng
 L

i [
34

]
C

hi
na

Co
ho

rt
11

y
O

A
I

27
3(

P)
47

96
(P

)
18

8(
P)

Ra
nd

om
 

sa
m

pl
in

g
81

(P
)

N
A

LA
SS

O

13
H

on
gz

hi
 L

iu
 

[3
5]

C
hi

na
Co

ho
rt

5y
A

 h
ig

h‐
vo

l-
um

e 
jo

in
t 

re
pl

ac
em

en
t 

pr
ac

tic
e

53
7(

K)
17

79
(K

)
11

56
(K

)
Ra

nd
om

 
sa

m
pl

in
g

62
3(

K)
U

ni
va

ria
te

 
co

x,
 m

ul
ti-

va
ria

te
 c

ox
, 

an
d 

La
ss

o’
s 

Co
x

D
L

U
SA

 U
ni

te
d 

St
at

es
 o

f A
m

er
ic

a,
 U

K 
U

ni
te

d 
Ki

ng
do

m
, N

A 
no

t a
va

ila
bl

e,
 O

AI
, O

st
eo

ar
th

rit
is

 In
iti

at
iv

e:
 A

 K
ne

e 
H

ea
lth

 S
tu

dy
, M

U
ST

 M
us

cu
lo

sk
el

et
al

 p
ai

n 
in

 U
lle

ns
ak

er
 S

tu
dy

, C
PR

D
 C

lin
ic

al
 P

ra
ct

ic
e 

Re
se

ar
ch

 D
at

al
in

k,
 M

O
ST

 
M

ul
tic

en
te

r O
st

eo
ar

th
rit

is
 S

tu
dy

, P
 p

at
ie

nt
, K

 k
ne

e,
 I 

im
ag

e,
 F

in
e–

G
ra

y 
co

m
pe

tin
g 

ris
k 

re
gr

es
si

on
 m

od
el

, L
R 

lo
gi

st
ic

 re
gr

es
si

on
 m

od
el

, D
L 

de
ep

 le
ar

ni
ng

 m
od

el
, C

ox
 C

ox
 p

ro
po

rt
io

na
l-h

az
ar

ds
 m

od
el

, S
VM

 s
up

po
rt

 v
ec

to
r 

m
ac

hi
ne

 m
od

el
, R

F 
ra

nd
om

 fo
re

st
 m

od
el

, D
T 

de
ci

si
on

 tr
ee

 m
od

el
, G

BM
 g

ra
di

en
t b

oo
st

in
g 

m
ac

hi
ne

 m
od

el
 A

N
N

, a
rt

ifi
ci

al
 n

eu
ra

l n
et

w
or

k 
m

od
el



Page 7 of 11Tian et al. European Journal of Medical Research          (2025) 30:317 	

Risk of bias in studies
In terms of predictive factors, all studies were consid-
ered to have a low risk of bias. Regarding the risk of bias, 
two models [19, 28] were rated unclear bias risk due to 
the lack of reported information on inclusion and exclu-
sion criteria, whereas other models were rated as low 
risk of bias. In the results section, two models were con-
sidered unclear bias risk [19, 28, 30] due to the lack of 
assessment of predictive factors and the time interval for 
result determination, whereas other models were con-
sidered to have a low bias risk. Additionally, one model 
[30] did not include an independent validation set, four 
models [25, 31, 33] did not provide sufficient informa-
tion to determine the appropriate method for handling 
missing data, and five models [32] did not conduct inter-
nal validation. Therefore, these studies were classified 
as having a high risk of bias. Five models [27] did not 
have enough information to determine the appropriate 
method for handling missing data, and six models [29] 
did not report information on internal validation. These 
studies were thus classified as having an unclear risk of 
bias. One model [28, 34] was judged as low risk of bias. 
Figure  2 gives an overall summary of PROBAST risk of 
bias across all included studies. The detailed assessment 
of each question in four domains of bias risk is presented 
in Additional File 3.

Synthesized results
ML models in the included studies were classified 
based on the source of variables, including clinical fea-
tures, radiomics, and the combination of clinical fea-
tures and radiomics. In the training set, the c-index for 
each source of variables was 0.713 (0.628 – 0.799) for 
clinical features, 0.841 (0.777 – 0.904) for radiomics, and 
0.844 (0.815 – 0.873) for the combination of clinical fea-
tures and radiomics. In particular, the radiomic variables 
included two categories: X-ray and MRI. The c-index 
value was 0.895 (0.865 – 0.924) for models based on X-ray 
alone and 0.755 (0.508 – 1.000) for models based on MRI 
alone. ML models based on the combination of clinical 
features and radiomics were categorized into four sub-
groups: clinical features + X-ray, clinical features + MRI, 
clinical feature + MRI + X-ray, and clinical fea-
tures + US + X-ray. The c-index value for each subgroup 
was 0.867 (0.824–0.909), 0.772 (0.539 ~ 1.000), 0.842 
(0.816–0.867), and 0.820 (0.725–0.915), respectively. In 
the validation set, the c-index for ML models based on 
clinical features, radiomics, and the combination of clini-
cal features and radiomics was 0.656 (0.526 – 0.786), 0.861 
(0.806 – 0.916), and 0.831 (0.799 – 0.863), respectively. 
The radiomic variables included two categories: X-ray 
and MRI. The c-index value was 0.882 (0.825 ~ 0.939) for 
models based on X-ray alone and 0.725 (0.499 – 0.950) 

Fig. 2  Risk of bias by PROBAST criteria
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for models based on MRI alone. Furthermore, the ML 
models based on the combination of clinical features 
and radiomics were also categorized into three sub-
groups: clinical features + X-ray, clinical features + MRI, 
and clinical features + MRI + X-ray. The c-index values 
for these subgroups were 0.837 (0.810–0.865), 0.758 
(0.540 – 0.977), and 0.876 (0.842–0.910), respectively. 
The specific synthesized results are shown in Table 2 and 
Fig. 3.

Discussion
The prediction of postoperative gait conditions using 
ML methods in TKA patients was reported as early 
as 2009 [36]. In the following decades, ML research 
on TKA has grown increasingly and become diverse, 
including postoperative patient quality of life, satisfac-
tion, duration of opioid use, and various adverse risk 
assessments [37–41]. The number of studies on ML 
prediction of TKA candidates has been increasing grad-
ually since 2019 [28]. A study led by Lee [42] discovered 
that ML models could be employed to automatically 
assess the severity of KOA based on X-ray and predict 
the need for TKA. Zhong [43] et  al. also investigated 
the potential of ML in evaluating individual conditions 
requiring TKA, but their study was discontinued due 
to objective conditions and technical problems. This is 
the first systematic review and meta-analysis to assess 
the feasibility of ML for predicting the requirement of 
TKA for KOA patients. The results of this meta-analy-
sis highlighted that the ML model had an ideal perfor-
mance in identifying TKA candidates. X-ray data were 
the most widely used among the modeling variables. 
In terms of model types, LR and DL models were more 
popular. Most ML models were constructed based on 

clinical features and radiomics. X-ray and MRI data in 
radiomics were frequently used as modeling variables. 
Our analysis showed no overfitting in the effect size of 
the training set and validation set. Furthermore, the 
models based on clinical features or radiomics without 
X-ray data had similar performance to that of models 
based on the combination of clinical features and radi-
omics. Any ML model with modeling parameters of 
X-ray data had better performance both in the training 
set and validation set, regardless of the complexity of 
modeling variables.

The Kellgren–Lawrence (KL) grade 4 on radiography 
(end-stage KOA) and persistent knee joint pain are criti-
cal indicators for the necessity of TKA for patients [44, 
45]. In some cases, the radiographic evidence of end-
stage KOA may not adequately reflect the symptoms 
and functional status of patients. Numerous endeavors 
have been made to improve postoperative outcomes for 
TKA patients by considering several parameters, such 
as preoperative knee joint pain, function, and survival 
status [46]. Although X-ray is commonly utilized as the 
primary diagnostic tool in orthopedics, it is not effective 
in diagnosing diseases affecting soft tissues. Therefore, 
early characteristic signs on X-rays are frequently over-
looked when predicting TKA events in KOA patients. 
However, X-ray imaging holds clinical significance in 
evaluating the condition of the patient’s knee joint and 
determining appropriate treatment strategies, includ-
ing medication, physical therapy, and surgical interven-
tions for lower limb alignment. These measures could 
hinder the development of end-stage KOA observed on 
X-rays. The results of this meta-analysis revealed that 
the models constructed using only X-ray as the mod-
eling variable had the best performance, and the C-index 

Table 2  Meta-analysis results of the C-index of the prediction model for KOA patients

KOA knee osteoarthritis, No. number of models, I2 heterogeneity, MRI magnetic resonance imaging, US ultrasound, NA not available

Modeling variables Training set Validation set

No c-index I2(%) No c-index I2(%)

Clinical feature 4 0.713 (0.628 – 0.799) 99.7 2 0.656 (0.526 – 0.786) 96.4

Radiomics

 X-ray 3 0.895 (0.865 – 0.924) 84.9 12 0.882 (0.825 – 0.939) 98.2

 MRI 2 0.755 (0.508 – 1.000) 99.0 2 0.725 (0.499 – 0.950) 94.8

 Overall 5 0.841 (0.777 – 0.904) 97.4 14 0.861 (0.806 – 0.916) 98.1

Clinical feature + radiomics

 Clinical feature + X-ray 7 0.867 (0.824–0.909) 95.4 9 0.837 (0.810–0.865) 59.4

 Clinical feature + MRI 2 0.772 (0.539 – 1.000) 98.9 2 0.758 (0.540 – 0.977) 95.2

 Clinical feature + MRI + X-ray 6 0.842 (0.816–0.867) 86.7 2 0.876 (0.842–0.910) 0

 Clinical feature + US + X-ray 1 0.820 (0.725–0.915) NA

 Overall 16 0.844 (0.815 – 0.873) 95.4 13 0.831 (0.799 – 0.863) 79.1
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was 0.895 (0.865 – 0.924) in the training set and 0.882 
(0.825 – 0.939) in the validation set in the subgroup.

Limitations
However, it is imperative to recognize the presence of 
multiple limitations that could impact the interpreta-
tion of the results. At present, there are still few original 
studies eligible for the meta-analysis. For example, there 
was only one model in the clinical features + US + X-ray 
group in the subgroup of ML models based on the com-
bination of clinical features and radiomics, which may 
have influenced the results. The limited use of modeling 
variables other than X-rays in the included studies may 
undermine the predictive performance. At the same time, 
in the context of radiomics as variables, only a few stud-
ies employed intelligent extraction tools for segment-
ing regions of interest, which is typically influenced 

by human expertise and potentially introduces bias 
to the model. It is worth noting that a high proportion 
of studies were based on modeling in the Osteoarthri-
tis Initiative Cohort, and only two studies had modeling 
variables based on local databases. These databases are 
not designed for constructing ML models. They may lack 
prospective patient data and the available patient data 
may be incomplete. Consequently, variables for these ML 
models often have to be selected after the fact. In addi-
tion to the known risk factors and clinical experience, 
the selection of modeling variables is heavily influenced 
by database access rights. Given no standard database 
specifically for building ML models, the selection of 
modeling variables in many studies is complicated. The 
utilization of many irrelevant modeling variables not 
only increases the research time but also may weaken the 
performance of the model. Using only one indicator for 

Fig. 3  Forest plot of c-index for machine learning to identify candidates for TKA surgery
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evaluating performance may result in misinterpretation. 
It is challenging to directly obtain or indirectly calculate 
enough indicators, such as sensitivity and specificity to 
enhance the accuracy of false positive and false negative 
predictions. In addition, this study did not analyze pub-
lication bias among the included literature primarily due 
to the diverse modeling variables and the limited num-
ber of models in the subgroups. At present, ML models 
designed to identify candidates for TKA are not exten-
sively utilized within clinical settings. However, in order 
to maximize the potential advantages of these models 
in clinical practice, it is essential to build more targeted 
and professional prospective databases that support the 
establishment of ML models.

Conclusions
The ML model is feasible in identifying candidates for 
TKA. X-ray-based ML models exhibit the best predictive 
performance among the models. However, there is cur-
rently a lack of high-level research available for clinical 
application. Furthermore, the accuracy of ML models in 
identifying candidates for TKA is greatly constrained by 
the quality of modeling parameters and database archi-
tecture. It is crucial to construct a more targeted and 
professional database to promote the development and 
clinical application of ML models.
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