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Abstract 

Background  Gestational diabetes mellitus (GDM) is the most common pregnancy complication, significantly affect-
ing maternal and neonatal health. Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized 
by metabolic abnormalities, which notably elevates the risk of developing GDM during pregnancy.

Methods  In this study, we utilized ultra-high-performance liquid chromatography for untargeted metabolomics 
analysis of serum samples from 137 pregnant women in the early-to-mid-pregnancy. The cohort consisted of 137 
participants, including 70 in the PCOS group (36 who developed GDM in mid-to-late pregnancy and 34 who did not) 
and 67 in the non-PCOS group (37 who developed GDM and 30 who remained GDM-free). The aim was to investigate 
metabolic profile differences between PCOS and non-PCOS patients and to construct early GDM prediction models 
separately for the PCOS and non-PCOS groups.

Results  Our findings revealed significant differences in the metabolic profiles of PCOS patients, which may help elu-
cidate the higher risk of GDM in the PCOS population. Moreover, tailored early GDM prediction models for the PCOS 
group demonstrated high predictive performance, providing strong support for early diagnosis and intervention 
in clinical practice.

Conclusions  Untargeted metabolomics analysis revealed distinct metabolic patterns between PCOS patients 
and non-PCOS patients, particularly in pathways related to GDM. Based on these findings, we successfully constructed 
GDM prediction models for both PCOS and non-PCOS groups, offering a promising tool for clinical management 
and early intervention in high-risk populations.

Keywords  Gestational diabetes mellitus, Polycystic ovary syndrome, Untargeted metabolomics analysis, Prediction 
models

Background
Gestational diabetes mellitus (GDM), one of the most 
common complications of pregnancy, is an abnormality 
in glucose tolerance of varying degrees that occurs for the 
first time during pregnancy [1]. GDM is rising globally, 
year by year, ranging from 5.8% to 14.0% [2–5]. Studies 
have shown that, as the most common pregnancy com-
plication in the second and third trimesters, it is associ-
ated with a higher risk of adverse perinatal outcomes, 
including preeclampsia, infection, premature birth, 
increased cesarean section rates, and premature rupture 
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of membranes [6, 7]. Furthermore, women with GDM 
and their children are more likely to develop type 2 dia-
betes in their later life [8]. Pregnant women with GDM 
have a 52.2% risk of developing type 2 diabetes within the 
first decade after giving birth [9]. Recent studies showed 
that the overall relative risk of type 2 diabetes in women 
with DGM is increased by 7–10 times compared to 
women without GDM [10–12].

Polycystic ovary syndrome (PCOS) is a common endo-
crine disorder characterized by insulin resistance, hyper-
androgenism, and metabolic abnormalities, affecting 
~ 5–15% of women of reproductive age [13, 14]. Patients 
with PCOS have a significantly higher risk of develop-
ing GDM during pregnancy compared to the general 
pregnant population [15]. Some studies have shown that 
PCOS increases the risk of developing gestational dia-
betes by two to three times [16]. Previous studies have 
shown that the combination of PCOS and insulin resist-
ance may accelerate the progression of glucose metabo-
lism disorders [17]. Thus, the mechanism of GDM in 
patients with PCOS may differ from that in the general 
pregnant population.

As two of the most common metabolic diseases affect-
ing women of reproductive age, both are risk factors for 
future metabolic and cardiovascular abnormalities, espe-
cially type 2 diabetes. The prevalence of GDM and PCOS, 
as well as diabetes itself, is increasing worldwide, posing 
a significant public health challenge. Together, GDM and 
PCOS, which act and affect up to 20% of generally young 
women, are two critical risk factors for the future devel-
opment of type 2 diabetes [18, 19].

The current gold standard for diagnosing GDM is the 
oral glucose tolerance test (OGTT) [20]. Women at high 
risk for GDM undergo an OGTT at the earliest oppor-
tunity, whereas women who do not meet the high-risk 
criteria are usually only examined after 24–28 weeks of 
gestation [21, 22]. This means that the opportunity for 
early detection and intervention for GDM is delayed. 
In addition, the OGTT has a specific false-positive and 
false-negative rate, which may lead to inaccurate pre-
dictions, especially if individuals have different levels of 
insulin resistance. Existing diagnostic tools are mainly 
based on routine glucose monitoring but do not allow an 
in-depth exploration of the whole metabolic pictures of 
the pregnant women. Machine learning (ML) models are 
increasingly used to identify risk factors and early predict 
GDM [23].

Metabolomics can provide the instantaneous state 
of cellular metabolic activity and reflect the combined 
effects of environmental, genetic, and physiological 
changes on the organism. Compared with genomics 
and proteomics, metabolites are downstream products 
closer to disease manifestations and are, therefore, more 

suitable for predicting metabolic-related diseases. Non-
targeted metabolomics analysis can comprehensively 
cover the metabolite spectrum, thereby revealing more 
potential disease biomarkers and facilitating early detec-
tion of disease risks [24]. Metabolites are recognized as 
potential biomarkers of disease, and the ability to reveal 
metabolic abnormalities before the onset of disease 
symptoms can help to identify at-risk populations in early 
pregnancy and provide a basis for early intervention. For 
example, cardiometabolic diseases are associated with 
specific lipid metabolites [25], and branched-chain amino 
acids and their metabolites can predict the incidence 
of type 2 diabetes [26]. In the current study, although 
patients with PCOS are known to be at higher risk of 
GDM, fewer studies have been conducted on metabolite 
differences between patients with PCOS and ordinary 
pregnant women, especially in the early stages of preg-
nancy. The prediction models that have been developed 
are usually based on the whole group of pregnant women 
without making a clear distinction between PCOS and 
ordinary pregnant women. Such models may ignore the 
unique metabolic profile of patients with PCOS, thus 
limiting their applicability to high-risk populations.

In this study, we analyzed plasma samples from 137 
pregnant women in early-to-mid-gestation, divided into 
two groups based on PCOS status: the PCOS group 
(n = 70) and the non-PCOS group (n = 67). Using ultra-
high-performance liquid chromatography (UHPLC) for 
untargeted metabolomics, we constructed early GDM 
prediction models for PCOS and non-PCOS patients 
and compared the metabolite patterns between the two 
groups. We hypothesize that the metabolic character-
istics of PCOS patients differ significantly from those of 
non-PCOS patients, particularly in pathways related to 
GDM. This study aims to provide insights into the unique 
metabolic profiles of PCOS patients, establish specific 
GDM prediction models for this population, and pro-
mote the application of metabolomics in the early diag-
nosis of GDM.

Methods
This study is a prospective study based on the birth 
cohort in Jinan, aimed at identifying biomarkers of 
the risk for GDM in the mid-to-late pregnancy among 
women with PCOS and non-PCOS individuals, using 
plasma metabolomics during early pregnancy (Clinical 
Trial no. ChiCTR2400085868). Women with singleton 
pregnancies at 11+0–13+6  weeks of gestation were re-
recruited at Jinan Maternity and Child Care Hospital. 
The study was approved by the Ethics Review Commit-
tee of Jinan Maternity and Child Care Hospital and con-
ducted in accordance with the Declaration of Helsinki 
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(No. 2024 - 1- 011). All participants signed a written 
informed consent.

Study population and design
The inclusion and exclusion criteria for participants 
are as follows. Inclusion criteria: (1) gestational age 
11–13+6  weeks at inclusion; (2) no history of diabe-
tes mellitus before pregnancy; and (3) age 18–45 years. 
Exclusion criteria: (1) baseline fasting blood glucose ≥ 6.1 
mmol/L and (2) patients with severe acute or chronic dis-
eases, such as severe liver and kidney dysfunction, car-
diovascular and cerebrovascular diseases, autoimmune 
diseases, blood system diseases, etc.

Diagnosis of GDM and PCOS
Hundred thirty seven pregnant women were 
recruited and provided clinical and laboratory data at 
11–13+6  weeks of gestation. They underwent a 75 g 
OGTT at 24–28 weeks of gestation. The diagnosis of 
GDM was made according to the International Associa-
tion for Diabetes and Pregnancy Study Group (IADPSG) 
criteria [27]: fasting glucose ≥ 5.11 mmol/L, 1-h glucose 
≥ 10.00 mmol/L, or 2-h glucose ≥ 8.50 mmol/L. Using 
the modified Rotterdam criteria [28], PCOS can be 
diagnosed if any two of the following are met with the 
exclusion of other relevant disorders: (1) clinical or bio-
chemical hyperandrogenism; (2) evidence of sporadic 
anovulation; and (3) ultrasonographic findings of a poly-
cystic ovarian pattern.

Sample collection
5 mL peripheral vein ethylene diamine tetra-acetic acid 
(EDTA) blood samples were collected and centrifuged at 
1600×g for 10 min at 4 °C. The upper plasmas were aspi-
rated into eppendorf (EP) tubes, followed by centrifuga-
tion at 16,000×g for 10 min at 4 °C and stored at − 80 °C.

Instrument analysis and quality control
One hundred μL of plasma was placed in an EP tube, and 
added 400 μL of 80% methanol in water for each sample. 
The mixture was vortexed and placed in an ice bath for 
5 min, then centrifuged at 15,000×g, 4 ℃ for 20 min. The 
supernatants were diluted with mass spectrometry grade 
water to a methanol content of 53%, then centrifuged at 
15,000×g and 4 °C for 20 min, and the supernatants were 
collected and injected into liquid chromatography–mass 
spectrometer (LC–MS) for analysis. The samples were 
separated using a Vanquish UHPLC system (Thermo Sci-
entific, Bremen, Germany) using a Hypesil Gold column 
(100 × 2.1 mm, 1.9 µm). Each sample was detected by 
electrospray ionization (ESI) in both positive and nega-
tive ion modes. The samples were separated by UHPLC 
and analyzed by mass spectrometry using Q Exactive™ 

HF/Q Exactive™ HF-X spectrometer (Thermo Scientific, 
Bremen, Germany). All samples were injected in a ran-
dom order.

Principal component analysis (PCA) was performed 
to determine the separation between control (CON) 
and GDM groups and the separation between PCOS 
and PCOS–GDM groups. Differential metabolites were 
screened based on the VIP value of orthogonal partial 
least squares–discriminant analysis (OPLS–DA) and the 
p value of the T test. p < 0.05, VIP > 1, and FC > 1.2 are 
up-regulated, and p < 0.05, VIP value > 1, and FC < 1/1.2 
were down-regulated. Enrichment analysis of differential 
metabolites was performed based on the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database to obtain 
significantly enriched pathways (p < 0.05).

The quality control (QC) samples were prepared by 
mixing equal volumes of the experimental samples. The 
first three QCs before injection were used to monitor 
the instrument status and balance the chromatography–
mass spectrometry system, and the next three QCs were 
scanned in segments. QCs inserted in the middle of the 
sample test were used to evaluate the system stability 
during the entire experiment and perform data quality 
control analysis.

Identification of differential metabolites
The offline data file was imported into CD 3.3 library 
search software for processing and simple screening of 
parameters such as retention time and mass-to-charge 
ratio was performed for each metabolite. The molecu-
lar formula was then predicted based on the molecu-
lar ion peaks and fragment ions and compared with the 
mzCloud, mzVault, and Masslist databases. The origi-
nal quantitative results were standardized according to 
the formula to obtain the relative peak area, and finally, 
the identification and relative quantitative results of the 
metabolites were determined.

Model building strategy
The Boruta algorithm was used to select metabolites that 
were essential in classifying the two comparison groups. 
The top 3 metabolites were selected according to their 
importance in drawing receiver operating characteristic 
curve (ROC curve), and classification models were con-
structed based on the importance of the top 3 metabo-
lites using a multivariate logistic regression algorithm. 
The performance of the models was evaluated by the 
ROC curve and the area under the curve (AUC value).

Statistical analysis
SPSS 27.0 statistical analysis software was used for clini-
cal data analysis. The normality of continuous variables 
was evaluated using the Shapiro–Wilk test. Student’s 
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t test or chi-square test and logistic regression analy-
sis were used to evaluate the differences between GDM 
cases and controls in terms of continuous and categorical 
variables. Continuous variables with approximately nor-
mal distribution were expressed as mean ± SD. When the 
data did not conform to normal distribution, the median 
and interquartile range were used to describe the central 
tendency and dispersion of the data. Independent sam-
ples t tests were used for variables that conformed to a 
normal distribution and met the Chi-square assumption. 
When the data did not conform to normal distribution 
or did not meet the assumption of homogeneity of vari-
ance, the Mann–Whitney U test was used for inter-group 
comparison.

Data availability
Metabolomics data were deposited at (https://​ngdc.​cncb.​
ac.​cn/​omix: accession no.OMIX008162).

Results
Clinical characteristics of pregnant women in each group
The clinical characteristics of pregnant women in the 
normal PCOS and non-PCOS groups (participants 
without PCOS) are shown in Table 1. A total of 137 par-
ticipants were enrolled in this prospective study. In the 
PCOS group, 36 participants were diagnosed with GDM 
in the second and third trimesters, while 34 did not 
develop GDM. In the non-PCOS group, 37 participants 
were diagnosed with GDM in the second and third tri-
mesters, and 30 served as controls without GDM. There 
were no statistically significant difference in the ges-
tational week at the time of blood sampling and fasting 
insulin between pregnant women without PCOS and 

those with PCOS. However, pregnant women with PCOS 
had a significantly higher body mass index (BMI) com-
pared to the non-PCOS group. In addition, fasting blood 
glucose and insulin resistance indicators (IRI) were also 
higher in the PCOS group than in the non-PCOS group, 
with a statistically significant difference (p < 0.05).

Overall experimental process
Figure 1 shows the flow chart of the experiment. A total 
of 137 plasma samples were collected from pregnant 
women with and without PCOS, of which the PCOS 
population included those with PCOS alone and those 
with PCOS combined with GDM, and the non-PCOS 
group consisted of ordinary pregnant women and those 
with GDM. Pregnant women’s plasmas were collected 
at 11–13+6  weeks, centrifuged, and stored in a − 80 °C 
refrigerator. A 75 g OGTT was performed at 24–28 
weeks. Subsequently, metabolomics analysis was con-
ducted, and differences in metabolic patterns between 
groups were analyzed, as well as the construction of dis-
ease prediction models.

Analysis of metabolite pattern differences between PCOS 
and non‑PCOS groups
Retention time–accurate mass pairs were extracted from 
each sample profile in positive and negative ion modes. 
The quality control samples showed a strong correlation 
with R2 > 0.9 (Figure S1), indicating good stability of the 
metabolomics detection process and high data qual-
ity. We performed unsupervised PCA analysis using the 
metabolic profiles of all samples. The metabolic charac-
teristics of the PCOS were significantly different from 
the non-PCOS group (Fig. 2A). The OPLS–DA plot also 

Table 1  Clinical characteristics in the PCOS and non-PCOS groups

Data are presented as mean ± SD or median (interquartile range) or number (%)

IRI = fasting insulin × fasting glucose/22.5, PCOS polycystic ovary syndrome, GDM gestational diabetes mellitus, CON control, BMI body mass index

Maternal characteristic PCOS Non-PCOS p value

PCOS–GDM PCOS GDM CON

n = 36 n = 34 n = 37 n = 30

Age (years) 30.86 ± 4.58 31.26 ± 5.09 34.0 (31.5–37.0) 35.0 (31.0–36.0)  < 0.001

BMI 26.25 ± 4.45 25.45 ± 4.43 25.42 ± 3.26 22.23 ± 3.03 0.007

Parity

 0 23 (63.9%) 23 (67.6%) 11 (29.7%) 14 (46.7%) < 0.001

 1 13 (36.1%) 9 (26.5%) 25 (67.6%) 11 (36.7%)

 ≥ 2 0 (0.0%) 2 (5.9%) 1 (2.7%) 5 (16.6%)

Gestational week at time 
of blood sampling

12.5 (12.10–13.20) 12.3 (11.50–12.50) 12.4 (12.10–13.15) 12.3 (11.90–13.30) 0.432

Fasting blood glucose 4.60 (4.50–4.80) 4.65 (4.58–4.80) 4.60 (4.40–4.80) 4.40 (4.10–4.60)  < 0.001

IRI 2.24 ± 0.52 1.87 ± 0.58 1.93 ± 0.68 1.72 ± 0.39 0.02

Fasting insulin 10.71 ± 2.52 9.00 ± 0.58 8.70 (7.26–12.30) 8.91 (7.46–10.30) 0.156

https://ngdc.cncb.ac.cn/omix
https://ngdc.cncb.ac.cn/omix
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showed differences in metabolic profiles between the two 
groups (Fig. 2B). A total of 1114 metabolites were anno-
tated in the PCOS vs. non-PCOS groups. We set the sig-
nificance threshold to screen as differential metabolites 
as VIP > 1.0, FC > 1.2, or FC < 0.833, and p value < 0.05. 
Twenty-nine metabolites were upregulated, and three 
were downregulated (Fig.  2C, Table  S1). In addition, in 
the heatmaps, we observed differences in metabolite 
profiles between PCOS patients and non-PCOS patients 
(Fig. 2D). We found that the metabolic profile of PCOS 
patients was significantly different from that of pregnant 
women without PCOS.

Differences in metabolic patterns between PCOS patients 
and control with GDM
We further analyzed the differences that between metab-
olites in normal subjects and PCOS patients after devel-
oping GDM. In the PCOS–GDM vs. PCOS groups, 1114 
metabolites were annotated. We set the significance 
threshold as VIP > 1.0, FC > 1.2, or FC < 0.833, and p 
value < 0.05; 32 metabolites were upregulated, and 6 were 
downregulated. 856 and 258 metabolites were anno-
tated in the GDM vs. CON groups, respectively. With a 
significance threshold, 29 metabolites were upregulated, 
and 9 were downregulated (Fig.  3A, B, Tables S2, 3). 

Furthermore, in the heatmaps, we observed differences 
in metabolite profiles between PCOS patients with GDM 
and GDM patients (Fig. 3C, D). All differential metabo-
lites in different comparison groups were matched to 
the KEGG database to obtain information on the path-
ways in which the metabolites were involved. Enrich-
ment analysis was performed on the annotated results to 
obtain the pathways with higher enrichment of differen-
tial metabolites. The differential metabolites between the 
GDM group and the CON group were mainly annotated 
and enriched in glutathione metabolism, glyoxylate, and 
dicarboxylate metabolism, proximal tubule bicarbo-
nate reclamation, citrate cycle (TCA cycle), taste trans-
duction, etc. (Fig.  3E). Differential metabolites in the 
PCOS–GDM and PCOS groups were mainly annotated 
and enriched in the glyoxylate and dicarboxylate metabo-
lism, citrate cycle (TCA cycle), taste transduction, central 
carbon metabolism in cancer, long-term depression, etc. 
(Fig.  3F). There were overlaps in some metabolic path-
ways among these comparison groups, e.g., glyoxylate 
and dicarboxylate metabolism, citrate cycle (TCA cycle), 
taste transduction. These metabolic pathways were 
closely related to the research objectives. We observed 
a clear difference in the differential metabolites between 
GDM and normal controls patients and between PCOS 

Fig. 1  Overall experimental process. A Study subjects and sample procedure; B metabolotics analysis; C building predictive models
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Fig. 2  Metabolite pattern differences between PCOS and non-PCOS groups. A PCA score plots of PCOS (blue dots) vs. non-PCOS 
groups (orange dots); B PCOS vs. non-PCOS, cumulative R2X = 0.453 and R2Y = 0.369; C volcano plots of different metabolites in PCOS vs. non-PCOS 
groups; D heatmap: hierarchical clustering analysis was performed on differential metabolites between PCOS and non-PCOS. 
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patients with GDM patients and PCOS. Thus, unlike the 
GDM prediction model for normal subjects, we needed 
to construct a specific GDM prediction model for PCOS 
patients.

Identification of biomarkers using machine learning 
method
Based on the Boruta algorithm, 17 variables were 
screened and played an essential role in separating of 
GDM vs. CON groups (Table  S4). The ROC curves for 
the top five metabolites, ranked by importance, were 
drawn individually. The AUC values of these five metabo-
lites were 0.901, 0.881, 0.813, 0.819, and 0.814 (Figure 
S2). When the top three metabolites were used to predict 
the separation of the two groups using logistic regression, 
an AUC value of 0.989 (AUC > 0.9) indicated good pre-
dictive ability (Fig. 4). Based on the boruta algorithm, a 
total of 12 metabolites that played an essential role in the 
separation of PCOS–GDM vs. PCOS groups were iden-
tified (Table S5). The ROC curves of the top five critical 
metabolites were drawn separately. Their AUC values 
were 0.815, 0.836, 0.826, 0.826, and 0.721 (Figure S3). 
Using the top three metabolites, ranked by importance, 
to predict the separation of the two groups with the logis-
tic regression method, an AUC value of 0.908 (AUC > 0.9) 
demonstrated good predictive ability.

Discussion
GDM is the most common complication of pregnancy 
and usually manifests in the middle and late stages of 
pregnancy. Clinical risk factors for GDM include weight 
gain, increasing age, cardiovascular disease, past medical 
history, and PCOS [29]. GDM has been shown to have a 
significant impact on maternal and neonatal outcomes, 
including timing of delivery, birth weight, and neona-
tal health status. Women with PCOS are considered a 
high-risk group and have a significantly increased risk of 
developing gestational diabetes if the condition persists 
during pregnancy [30]. The current prevalence of GDM 
in pregnant women with PCOS is ~ 26%, which is signifi-
cantly higher than that observed in healthy controls [31, 
32]. Previous studies have demonstrated that newborns 
born to women with PCOS combined with GDM are 
more likely to experience fetal growth restriction [33, 34], 

amniotic fluid, premature rupture of membranes, and 
moderate to severe ovarian hyperstimulation syndrome 
[35, 36]. Predicting and preventing GDM requires iden-
tifying its associated risk factors and understanding the 
mechanistic links between PCOS and GDM, beyond rec-
ognizing the already established elevated risks.

Several GDM prediction models have been developed 
by integrating patients’general characteristics, clinical 
examination results, genetic information, and other rel-
evant data. Sweeting et  al. constructed a multivariate 
prediction model combining clinical risk factors with 
novel biomarkers, such as PAPP-A, triglycerides, and 
lipocalin- 2, achieving high predictive accuracy for early 
GDM with an AUC of 0.93 [37]. In addition, a meta-
analysis revealed that the use of metformin can reduce 
the incidence of GDM, highlighting its efficacy in PCOS 
patients [12]. Understanding the risk factors for GDM 
in PCOS patients not only enables early prevention but 
also provides clinicians with critical tools for timely 
interventions.

This study identified significant metabolic differences 
between PCOS patients and normal pregnant women 
with GDM. PCA revealed distinct metabolic profiles 
in both the PCOS–GDM vs. PCOS and GDM vs. CON 
groups, which were further corroborated by supervised 
OPLS–DA. Among the significantly different metabo-
lites screened, 17 were significantly altered in the GDM 
vs. CON group, while 13 were significantly altered in the 
PCOS–GDM vs. PCOS group. Interestingly, cis-aconitic 
acid was the only metabolite shared between the two 
groups, and it was upregulated in both.

In the GDM vs. CON group, downregulated metabo-
lites included THJ2201 N-pentanoic acid metabo-
lite, dl-stachydrine, spectinomycin, and orotic acid. 
Upregulated metabolites included compounds, such 
as 2-(3-fluoroanilino)-5,6-dihydro- 1,3-thiazepin- 
7(4H)-one, N-methyldioctylamine, PE 18:0_22:6, 
(2R)-2-[(2R,5S)-5-[(2S)-2-hydroxybutyl]oxolan-2-yl]
propanoic acid, l-(-)-Malic acid, LPE 22:6, Tert-ButylN-
[1-(aminoca- 3-methylbutyl]carbamate, 2,4-dihydroxy-
heptadec- 16-en-1-yl acetate, PE 18:0_20:4, l-Glutathione 
oxidized, 3-Indoleacrylic acid, PC 16:0_18:0. In con-
trast, the PCOS-GDM vs. PCOS group demonstrated 
downregulation of metabolites, such as d-Glucarate, 

Fig. 3  Metabolite pattern differences between PCOS and control patients with GDM. A Volcano plots of different metabolites in GDM vs. CON 
groups; B volcano plots of different metabolites in PCOS–GDM vs. PCOS groups; C heatmap: hierarchical clustering analysis was performed 
on differential metabolites between GDM and CON; D heatmap: hierarchical clustering analysis was performed on differential metabolites 
between PCOS–GDM and PCOS; E significantly enriched pathways in GDM vs. CON groups; F significantly enriched pathways in PCOS–GDM vs. 
PCOS groups. For bubble plots, the color of the dots reflects the enrichment p value, and the size reflects the count of the enriched metabolite. The 
impact value shows the weight of the metabolite on the pathway

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Nordiazepam, Dimethyl1,4-dihydro-1,2,4,5-tetraazine-
3,6-dicarboxylate, N-(4-{[(4,6-dimethyl-2-pyrimidinyl)
amino]sulfonyl}phenyl)-2-furamide, ST 27:1;O;S. Upreg-
ulated metabolites included citric acid, hydroxytriazolam, 
PC 18:0_20:4, trans-aconitic acid, dUMP, l-glutamate. 
Most of these differential metabolites were classified as 
lipids, organic acids, or amino acids, suggesting their 
involvement in pathways related to energy metabolism 
and glucose regulation.

Our findings align with those of previous studies. Pinto 
et  al. reported significant changes in plasma metabo-
lites, such as betaine, alanine, methanol, and proline in 
GDM patients, suggesting disruptions glycolysis, tri-
carboxylic acid cycle (TCA), amino acids metabolism, 
urea cycle, and lipid homeostasis [38]. The TCA cycle, 
which was significantly altered in this study, also played 
a critical role in the findings of O’Neill et al., who dem-
onstrated pronounced amino acid metabolite dysregu-
lation in the amniotic fluid of GDM patients during the 
second trimester, with significant changes observed in 
glucose, amino acids, glutathione, and fatty acids. Simi-
larly, Lu et al. identified 13 lipid metabolites, 10 of which 
were strongly associated with impaired glucose tolerance 
[39]. Anderson et  al. found that phosphatidylcholines 
(PC) and lysophosphatidylcholines (LPC) were positively 

associated with the risk of developing GDM [40]. These 
findings, combined with ours, suggest that PC, as a key 
lipid, may contribute to disruptions in blood glucose 
regulation.

The disadvantage of single variable prediction of GDM 
is that the prediction accuracy is not higher enough. 
Therefore, combining multiple variables, i.e., a machine 
learning-based approach, achieves high accuracy for 
GDM prediction. Research has shown that machine 
learning-based models can improve clinical diagnosis 
[41]. Studies have demonstrated that the model com-
posed of α-hydroxybutyric acid, β-hydroxybutyric acid, 
and myristic acid had a strong ability to diagnose GDM 
in mid-pregnancy, with an AUC of 0.828 [42]. Simi-
larly, Liu et  al. developed a model with l-phenylalanyl-
l-proline, hydroxylauroylcarnitine, and levoglucosan, 
which achieved an AUC of 0.89 in early pregnancy [43]. 
McMichael et  al. employed targeted plasma metabo-
lomics to predict GDM in overweight and obese preg-
nant women, achieving an internal validation AUC of 
0.833 with α-hydroxybutyrate, sphingo-myelin 14:0, 
xanthine, and hypoxanthine combined [44]. In this 
study, we constructed a GDM prediction model for 
normal pregnant women using (2R)− 2-[(2R,5S)− 
5-[(2S)− 2-hydroxybutyl]oxolan- 2-yl]propanoic acid, 

Fig. 4  Identification of biomarkers using machine learning method. A ROC curve of the top three metabolites in terms of importance in GDM 
vs. CON groups: AUC value = 0.989; B ROC curve of the top three metabolites in terms of importance in PCOS–GDM vs. PCOS groups: AUC value 
= 0.908
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2-(3-fluoroanilino)− 5,6-dihydro- 1,3-thiazepin- 7(4H)-
one), and spectinomycin, achieving an AUC value of 
0.989, indicative of high predictive performance. In addi-
tion, a specific prediction model for PCOS patients was 
constructed using d-glucarate, N-(4-{[(4,6-dimethyl- 
2-pyrimidinyl)amino]sulfonyl}phenyl)− 2-furamide, and 
trans-aconitic acid, achieving an AUC of 0.908. These 
results highlight the value of tailored predictive models 
for different subpopulations.

Despite these findings, this study has several limita-
tions. First, the sample size was relatively small. Second, 
factors, such as diet and exercise, which could influence 
metabolic differences, were not accounted for. Finally, 
this study relied on untargeted metabolomics, and valida-
tion with larger; targeted data sets are warranted to con-
firm these findings.

Conclusions
This study identified significant differences in metabolic 
patterns between PCOS patients and non-PCOS patients 
through non-targeted metabolomics analysis, with par-
ticular emphasis on pathways related to GDM. Notably, 
the metabolic profiles differed substantially between 
PCOS and normal pregnant women, highlighting the 
need for tailored prediction approaches. We success-
fully constructed GDM prediction models for both PCOS 
patients and normal pregnant women, each utilizing the 
top three metabolic markers. The models demonstrated 
high predictive power, with strong potential for clinical 
application in early identification and management of 
GDM. Future studies with larger cohorts and targeted 
validation are warranted to refine these models and fur-
ther elucidate the metabolic mechanisms underlying 
GDM.
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