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Abstract 

Objectives This study aims to develop a reliable and interpretable predictive model for long‑term survival in Type 
A aortic dissection (TAAD) patients, utilizing machine learning (ML) algorithms.

Methods We retrospectively reviewed the clinical data of patients diagnosed with TAAD who underwent open surgi‑
cal repair at the First Affiliated Hospital of Chongqing Medical University, from September 2017 to December 2020, 
and at the Chongqing University Central Hospital between October 2019 and April 2020. Cases with less than 20% 
missing data were imputed using random forest algorithms. To identify significant prognostic factors, we performed 
LASSO (Least Absolute Shrinkage and Selection Operator) Cox regression analysis, including preoperative blood mark‑
ers, previous medical history and intraoperative condition. Based on the advantages of the model and the character‑
istics of the data set, we subsequently developed a machine learning‑based prognostic model using Support Vector 
Machine (SVM) and evaluated its performance across key metrics. To further explain the decision‑making process 
of the SVM model, we employed SHapley Additive exPlanation (SHAP) values for model interpretation.

Results A total of 171 patients with TAAD were included in model training and internal test groups; 73 patients 
with TAAD were included in external test group. Through LASSO Cox regression, univariate analysis, and clini‑
cal relevance assessment, seven feature variables were selected for modeling. Performance evaluation revealed 
that the SVM model showed excellent performance in both the training and test sets, with no significant overfitting, 
indicating strong clinical applicability. In the training set, the model achieved an AUC of 0.9137 (95% CI 0.9081–
0.9203) and in the internal and external testing set, 0.8533 (95% CI 0.8503–0.8624) and 0.8770 (95% CI 0.8698–0.8982), 
respectively. The accuracy values were 0.8366, 0.8481 and 0.8030; precision values were 0.8696, 0.8374 and 0.8235; 
recall values were 0.8421, 0.7933 and 0.7651; F1 scores were 0.8290, 0.8148 and 0.7928; Brier scores were 0.1213, 
0.1417 and 0.1323; average precision (AP) values were 0.9019, 0.8789 and 0.8548, respectively. SHAP analysis revealed 
that longer operation time, extended cardiopulmonary bypass (CPB) duration, prolonged aortic cross‑clamp (ACC) 
time, advanced age, higher plasma transfusion volume, elevated serum creatinine and increased white blood cell 
(WBC) count significantly contributed to higher model predictions.
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Introduction
Aortic dissection is a life-threatening condition with an 
increasing incidence worldwide [1]. According to the 
Stanford classification system, Type A aortic dissection 
(TAAD) involves the ascending aorta and may extend to 
the aortic arch and descending aorta. Unlike Type B aor-
tic dissection, TAAD has well-defined emergency indi-
cations for surgical repair [2]. Early studies indicate that 
the mortality rate for TAAD increases by 1–2% per hour 
during the first 48 h [3]. Despite advancements in surgi-
cal techniques and life support systems, the prognosis 
for TAAD patients remains poor due to the time-critical 
nature of the condition and a high risk of complications 
in the early stages. Recent data reveal that in-hospital and 
30-day mortality rates for TAAD surgery exceed 20%, 
underscoring the urgent need for improved prognostic 
strategies [4, 5]. Therefore, identifying high-risk patients 
is crucial for optimizing prognosis management and 
guiding clinical decisions.

Perioperative conditions, such as cardiopulmonary 
bypass (CPB) duration, and specific biomarkers, includ-
ing C-reactive protein (CRP) levels, have been identified 
as significant prognostic factors. For instance, Zhu et al. 
reported that prolonged CPB time was significantly asso-
ciated with an increased risk of postoperative complica-
tions in TAAD patients, including central nervous system 
events, spinal cord ischemia, and myocardial ischemia 
or infarction[6]. Similarly, Tang et al. demonstrated that 
elevated preoperative CRP levels independently predict 
in-hospital mortality, renal dysfunction, and stroke in 
TAAD patients [7]. Moreover, the Systemic Immune-
Inflammation Index (SII), which combines neutrophil, 
lymphocyte, and platelet counts, has shown promise 
in predicting postoperative complications and 3-year 
survival [8, 9]. Subsequent studies have reported sev-
eral additional prognostic indicators in TAAD patients, 
including uric acid, D-dimer, fibrinogen, and the neutro-
phil-to-lymphocyte ratio [10–13]. Despite their statistical 
significance, these indicators are not widely implemented 
in clinical practice, primarily due to their limited ability 
to account for the complexity of TAAD prognosis in real-
world settings.

The limited clinical application of these indicators may 
stem from their narrow focus, which fails to account for 
the multi-organ impact of TAAD, including the heart, 

kidneys, respiratory system, and coagulation system—
key factors essential for survival. Consequently, progno-
sis assessments based solely on such indicators may be 
potentially inaccurate. Moreover, an exclusive focus on 
significantly abnormal markers may overlook the inter-
relationships between variables, leading to missing key 
information and underestimating the prognostic value of 
certain factors. Most of the prognostic indicators iden-
tified in previous studies have primarily been used for 
preoperative risk stratification to guide surgical timing. 
Unlike other acute or malignant conditions, early surgical 
intervention is critical to mitigate risks of aortic rupture 
and mortality [14]. Preoperative assessments alone are 
insufficient for comprehensive prognostic management. 
Therefore, models that incorporate intraoperative varia-
bles alongside clinical factors are essential to improve risk 
stratification and guide individualized decision-making.

Traditional regression methods, such as logistic regres-
sion and Cox regression, provide valuable insights but 
struggle to manage high-dimensional data and complex 
interactions, potentially overlooking critical prognostic 
factors [15, 16]. In contrast, machine learning (ML) tech-
niques excel in identifying complex patterns within data 
sets, offering advantages in model optimization and pre-
dictive accuracy [17]. ML has demonstrated significant 
potential in healthcare, particularly in predicting health 
outcomes and disease progression in cardiovascular 
conditions [17–20]. However, the application of ML to 
TAAD prognosis research, especially for long-term sur-
vival prediction, remains underexplored.

To improve the accuracy of prognostic prediction for 
long term outcomes in TAAD patients, we conducted 
a retrospective study using data from two centers. This 
study aims to develop and validate a comprehensive ML 
model that incorporates a range of preoperative, intra-
operative, and clinical variables to enhance prognostic 
assessment in TAAD patients. Considering the charac-
teristics of the data set and the strengths of the algorithm, 
we have selected the SVM machine learning approach to 
develop the predictive model. By utilizing SHapley Addi-
tive exPlanations (SHAP)-based visualization, the model 
aims to identify key prognostic factors, providing inter-
pretable insights to clinicians. We hypothesize that incor-
porating machine learning methods and multiple factors 
will enhance risk stratification, enable more personalized 

Conclusions This study developed an interpretable predictive model based on the SVM algorithm to assess long‑
term survival in TAAD patients. The model demonstrated accuracy, precision, and robustness in identifying high‑risk 
patients, providing reliable evidence for clinicians.

Keywords Type A aortic dissection, Machine learning, Long‑term survival, Predictive model, Support vector machine 
(SVM)
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treatment strategies, optimize perioperative manage-
ment, and ultimately improve patient outcomes.

Materials and methods
Study design and participants
This retrospective cohort study aims to address the chal-
lenge of improving the accuracy of prognostic prediction 
for long-term survival. It was conducted to analyze the 
clinical outcomes of patients with Stanford TAAD who 
underwent surgical repair at the Department of Thoracic 
and Cardiovascular Surgery, First Affiliated Hospital of 
Chongqing Medical University, from September 2017 to 
December 2020, and at the Chongqing University Cen-
tral Hospital between October 2019 and April 2020. Due 
to the relatively low incidence of TAAD, this study con-
secutively included eligible cases to ensure data integ-
rity and minimize selection bias, adhering to predefined 
inclusion and exclusion criteria. The inclusion criteria 
for this study were as follows: (1) patients diagnosed with 
Stanford TAAD following aortic computed tomography 
angiography (CTA); (2) patients who underwent surgical 
repair; and (3) patients aged 18 years or older. The exclu-
sion criteria included: (1) patients with more than 20% 
absence of clinical or laboratory data; (2) patients with 
preoperative comorbidities, such as malignant tumors, 
hematological disorders, infections, systemic inflamma-
tory diseases, or undergoing treatments that could influ-
ence biomarker levels and survival; (3) patients who died 
directly or indirectly from causes other than TAAD; and 
(4) patients with chronic-phase TAAD.

The determination of the minimum sample size consid-
ered multiple factors. Initially, we estimated that no more 
than 10 features would be included in the model to main-
tain practical applicability. Following the widely accepted 
rule of thumb that at least 10 samples are needed per 
predictor variable, we set a preliminary minimum sam-
ple size of 100. Previous studies reported a sample size of 
59 cases for deep learning model, which typically require 
larger data sets, and 188 cases for ML model predicting 
postoperative complications in TAAD patients [21, 22]. 
Given the SVM algorithm’s adaptability to small data 
sets and its ability to generalize well without large sample 
sizes, we concluded that a minimum of 200 cases would 
be appropriate.

Ultimately, 244 TAAD patients were included in the 
study, as illustrated in Fig.  1. Of 266 CTA-diagnosed 
TAAD cases, 171 were included in the training and inter-
nal test sets after excluding those who declined surgery 
(n = 52), had incomplete data (n = 19), had comorbidities 
or treatments affecting blood biomarkers (n = 11), had 
chronic phase (n = 4) or died from non-TAAD-related 
causes (n = 9) (Fig. 1A). The external test set comprised 
73 patients from 91 CTA-diagnosed cases after excluding 

those who refused surgery (n = 5), had incomplete data 
(n = 8), received treatments affecting blood biomarkers 
(n = 3), or died from non-TAAD-related causes (n = 2) 
(Fig. 1B).

The study was approved by the Independent Ethics 
Committee of the First Affiliated Hospital of Chongqing 
Medical University (approval number: 2024 - 583- 01; 
approval date: 01.02.2024), and the study was conducted 
in compliance with the ethical standards of the World 
Medical Association Declaration of Helsinki. Informed 
consents were obtained from all the participants. This 
study adhered to the STROBE guidelines for cohort 
studies, ensuring the reliability of the data handling and 
analysis (Table S3). The statistical analysis followed estab-
lished practices for survival analysis and machine learn-
ing model validation, as outlined in previous studies.

To ensure the objectivity of the analysis and minimize 
bias, this study employed both data extraction blinding 
and statistical analysis blinding. During data collection, 
patient records were de-identified to ensure confidential-
ity, and the data extraction team was blinded to the clini-
cal outcomes, including survival status, and treatment 
details. For statistical analysis, an independent team con-
ducted the analysis without knowledge of other clinical 
details unrelated to the outcome. Prior to analysis, all var-
iables were coded to obscure their identities. This coding 
process involved assigning numerical or alphanumeric 
identifiers to each variable, ensuring that the data analy-
sis team was unaware of the exact nature of the variables. 
The clinical outcome (survival status) was, however, a key 
outcome variable used in the analysis, and thus, the sta-
tistical team was aware of these outcomes during model 
development. This approach maintained blinding while 
ensuring that the model development process was based 
exclusively on the anonymized, encoded data.

Data collection
Demographic characteristics, clinical symptoms, and 
hemodynamic profiles at admission—including gen-
der, age, smoking history, hypertension (HTN), diabe-
tes mellitus (DM), cardiovascular disease (CVD), blood 
pressure, and heart rate and intraoperative details such 
as blood loss, operation time, cardiopulmonary bypass 
time (CPB), aortic cross-clamp time (ACC), red blood 
cell transfusion volume, and plasma transfusion volume 
were retrospectively reviewed and extracted from elec-
tronic medical records. Blood indicators were assessed 
within 24 h of hospital admission and prior to surgery. 
The biomarkers measured included red blood cell (RBC) 
count, creatinine, absolute neutrophil count (ANC), 
white blood cell (WBC) count, hemoglobin (Hb), plate-
let count, absolute lymphocyte count (ALC), monocyte 
count, serum albumin, uric acid, urea nitrogen, alanine 
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Fig. 1 Workflow for patient inclusion: training set and internal test set (A), workflow for patient inclusion: external test set (B), feature 
variable selection (C). Notes: Non‑TAAD‑related deaths (9 cases) in Fig. 1 A included trauma (4), cancer (1), psychologically‑related suicide (2) 
and community‑acquired pneumonia (3); non‑TAAD‑related deaths (two cases) in Fig. 1B included cancer (1) and trauma (1)
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aminotransferase (ALT), aspartate aminotransferase 
(AST), cardiac troponin T (cTnT), myoglobin, fibrino-
gen, and D-dimer, etc. A composite metric, the Systemic 
Immune-Inflammation Index (SII), was calculated using 
the following formula: platelet count × neutrophil count/
lymphocyte count.

Follow‑up and treatments
All patients included in this study underwent surgical 
repair. The primary outcome variables were survival sta-
tus and Aortic Survival (AS). Survival status indicated 
whether the patient was alive or deceased at the time of 
the follow-up. AS was defined as the time from surgery 
to an aortic-related death, including mortality due to 
aortic dissection, its complications (e.g., surgical com-
plications, aneurysm rupture, thrombosis), or reinter-
vention-related causes. Both AS and survival status were 
used as key variables to assess patient survival condition. 
For patients included for model training and internal 
test, follow-up started 3 months after discharge and con-
cluded on August 20, 2024. Telephone follow-ups, con-
ducted by trained interviewers, were performed at 3, 6, 
and 12 months after discharge, and subsequently every 
6 months to support post-discharge care. The maximum 
AS observed was 2445 days, with a median AS of 1190 
days. A retrospective follow-up of the patients’ survival 
status was conducted for those included in the external 
test, with data collected up to February 7, 2025. The max-
imum observed AS was 1930 days, with a median AS of 
784 days.

Data preprocessing and feature variable selection
For features with a missing data rate below 20%, random 
forest imputation was applied consistently to both survi-
vors and mortalities, as per guidelines by Ou et al. [23]. 
Patients in this study were randomized into an 80% train-
ing set and a 20% internal test set, based on simple rand-
omization using a computer-generated random number 
list, with the allocation ratio adapted from the study by 
Cao et al. [24]. To reduce the risk of overfitting, feature 
selection was conducted using LASSO Cox regression 
analysis. Features were excluded based on regression 
results and clinical relevance, yielding an initial model 
with 16 features, including 2 categorical and 14 continu-
ous variables. Subsequently, univariate analysis and cor-
relation analysis were performed on the preliminarily 
selected variables. Features were finalized for inclusion 
in the machine learning model based on statistical sig-
nificance, clinical relevance, correlation coefficients and 
LASSO Cox regression coefficients (Fig. 1C). To address 
data imbalance, data normalization was performed first, 
followed by the application of the Synthetic Minority 
Over-sampling Technique (SMOTE) to the training set, 

following the methods reported by Dablain et al. [25]. A 
sensitivity analysis was conducted to evaluate the impact 
of SMOTE method on the model’s predictive perfor-
mance, thus verifying the robustness of oversampling 
approach.

Model selection and performance evaluation
The support vector machine (SVM) stands out among 
machine learning models for its suitability in small-
sample data sets, offering significant theoretical and 
algorithmic advantages. Based on statistical learning 
theory, SVM utilizes the Structural Risk Minimization 
(SRM) principle, which prioritizes minimizing generali-
zation error over merely optimizing training error. This 
approach significantly enhances the model’s ability to 
generalize, especially when working with small sample 
sizes. Unlike traditional models, such as neural networks, 
which depend on large data sets to approximate the tar-
get function, SVM can effectively predict unseen data by 
maximizing the margin between classes, even with lim-
ited sample sizes [26].

SVM is particularly effective in handling small sam-
ple, high-dimensional data sets, offering a robust solu-
tion to the “curse of dimensionality.” By employing kernel 
functions, SVM maps the original feature space into a 
higher-dimensional space, enabling the identification of 
an optimal, linearly separable hyperplane without the 
need to explicitly compute the high-dimensional map-
pings [27]. In addition, when combined with LASSO 
Cox regression analysis, SVM incorporates regulariza-
tion techniques to control model complexity and reduce 
the risk of overfitting. These features make SVM a widely 
adopted approach in various fields, including disease 
classification (e.g., early cancer diagnosis), survival analy-
sis, and treatment recommendation [28–30].

Given the distinct advantages of Support Vector 
Machines (SVM), widespread application in medicine 
and bioinformatics, and the characteristics of the data 
set in this study, the SVM model was chosen for subse-
quent analysis. A tenfold cross-validation strategy was 
employed to ensure a comprehensive evaluation of model 
performance. The training data was divided into 10 sub-
sets, with each iteration using 9 subsets for model train-
ing and the remaining subset for validation. This process 
was repeated 10 times, allowing each subset to serve as 
the validation set once. Key performance metrics used to 
evaluate the model’s predictive and generalization ability 
included the area under the receiver operating character-
istic curve (AUC), accuracy, precision, recall, F1 score, 
Brier score, and the area under the precision–recall curve 
(AP), consistent with the protocols outlined in previous 
studies by Goodswen and Cao et al. [24, 31].
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To improve model interpretability, this study used 
the SHAP (SHapley Additive exPlanations) method, 
which quantifies each feature’s contribution to the 
model’s predictions. SHAP provides both global and 
local insights, identifying the most influential features 
by assigning precise attribution values to each variable 
[32].

Statistical analysis
This study included the demographic characteristics, 
risk factors, admission status, preoperative blood mark-
ers, and intraoperative conditions of TAAD patients. 
Continuous variables were presented as mean ± stand-
ard deviation (SD), with comparisons performed using 
the Student’s t test or the Mann–Whitney U test, based 
on the results of normality tests. For continuous vari-
ables that did not exhibit a normal distribution, the 
Mann–Whitney U test was employed for comparison. 
Categorical variables were expressed as frequencies and 
percentages (%) and analyzed using either the Chi-square 
test or Fisher’s exact test, depending on the size of the 
expected frequencies. The assumptions for the statisti-
cal tests were as follows: the Student’s t test assumed 
that the samples were drawn from normally distributed 
populations with equal variances. The Mann–Whitney U 
test was used for non-normally distributed data, assum-
ing that the distributions of the two independent sam-
ples were similar. The chi-square test assumed that the 
observed frequencies in each category were sufficiently 
large, typically with expected frequencies of at least 5 
per cell. Fisher’s exact test was applied when sample sizes 
were small or when expected frequencies were less than 
5. Pearson’s chi-squared test was used to evaluate corre-
lations among variables, visualized through a heatmap. 
The model was constructed using the SVM algorithm, 
and performance was evaluated using AUC, accuracy, 
precision, recall, F1 score, Brier score, and AP. Survival 
outcomes for patients with TAAD were evaluated and 
visualized using the Kaplan–Meier method. Finally, the 
SHAP method was used for model interpretation. A 
two-tailed p value of < 0.05 was considered statistically 
significant.

Data analysis was performed using SPSS 27.0 and 
Python 3.1. The Python libraries used were numpy (ver-
sion 1.23.5), pandas (version 1.5.3), scikit-learn (version 
1.2.2; including modules, such as model_selection, met-
rics, svm, ensemble, calibration, preprocessing, linear_
model, exceptions, utils, and base), matplotlib (version 
3.6.3), shap (version 0.41.0), imblearn (version 0.10.1), 
statsmodels (version 0.13.5), scipy (version 1.9.3). All 
libraries are open-source under respective licenses (e.g., 
MIT, BSD, etc.).

Results
Patient characteristics
A total of 171 TAAD patients were included in the study 
for model development and internal testing (Table  S1), 
with 53 deaths observed during the follow-up period. 
The proportion of missing data for key variables ranged 
from 0% to 17.54%. Missing values were handled using 
random forest algorithms for patients with < 20% miss-
ing data, while cases with > 20% missing values were 
excluded from the analysis. The average age of the cohort 
was 48.82 ± 9.61 years, and the majority were male (136 
cases, 79.53%). While only a small proportion of patients 
(6.43%, 11 cases) experienced concomitant shock, this 
group had a markedly higher mortality rate compared to 
those without shock (63.64% vs. 28.75%).

At admission, abdominal pain was reported in 9.94% 
of patients (17 cases) and was more prevalent in the out-
come group, with 18.87% (10 cases) reporting this symp-
tom. This observation suggests a potential association 
between abdominal pain and the severity of TAAD. In 
addition, patients with endpoint events had significantly 
shorter postoperative hospital stays compared to survi-
vors (10.25 ± 9.65 vs. 23.50 ± 14.41). This likely reflects 
that patients with serve conditions are more prone to 
early mortality and fail to benefit from postoperative 
care.

171 TAAD patients from our center were randomly 
assigned to the training (137 patients, 80%) and inter-
nal test (34 patients, 20%) groups; 73 TAAD patients 
from the other center were assigned to the external test 
group. No significant differences were found between the 
training and test groups in terms of demographic data, 
risk factors, admission conditions, hospital stays, preop-
erative laboratory results, and intraoperative conditions 
(Table S2).

Feature variable selection
LASSO (Least Absolute Shrinkage and Selection Opera-
tor) Cox regression was used to preliminarily screen 
variables associated with long-term survival, yielding 
16 perioperative characteristic variables. The optimal 
lambda value, determined through cross-validation, was 
25.9502 (Fig. 2A, B). Based on these findings, univariate 
analysis was performed on perioperative characteristics 
between survivors and patients who experienced end-
point events in the training set (Table 1). To avoid infor-
mation leakage from the test set, this analysis was limited 
to the training set. Variables with p values < 0.05 were 
considered statistically significant.

Among them, shock demonstrated minimal con-
tribution in the LASSO Cox regression and was, 
therefore, excluded from the final analysis. Similarly, 
abdominal pain was excluded from the model due to its 
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low reporting rate, lack of specificity, and limited clinical 
relevance. Although postoperative hospital stay (POHS) 
was significantly longer in survivors compared to those 
who experienced endpoint events (22.79 ± 14.79 vs. 
12.29 ± 10.65 days, p < 0.001), likely reflecting underly-
ing disease severity and early postoperative mortality in 
high-risk patients. Despite its statistical significance and 

substantial regression coefficient, POHS was excluded 
from model development to avoid selection bias and 
reverse causation.

In the training group, the difference in ACC time 
between survivor and mortality group was not statisti-
cally significant (p = 0.057, Table 1). However, ACC dem-
onstrated a relatively high regression coefficient in the 

Fig. 2 Feature variable selection based on the LASSO COX regression analysis. A Tuning parameter selection cross‑validation error curve. (LASSO, 
least absolute shrinkage and selection operator); B plot of the LASSO coefficient profiles
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LASSO Cox regression model, suggesting potential prog-
nostic relevance. As an important indicator of surgical 
complexity and the intensity of cardiopulmonary bypass 
support, ACC indirectly reflects the duration of intra-
operative tissue ischemia–reperfusion. This prolonged 
ischemia–reperfusion process has a profound impact 
on postoperative recovery of organ function, the risk of 
complications, and long-term survival in TAAD patients. 
Therefore, we decided to include ACC in further analysis. 
Similarly, although age did not reach statistical signifi-
cance (p = 0.176) and CPB duration exhibited a relatively 
small coefficient in the LASSO Cox regression analysis, 
both variables were retained in the model due to their 
well-established clinical relevance. Age represents a fun-
damental demographic factor, while CPB duration has 
been consistently associated with postoperative progno-
sis in TAAD patients undergoing surgical repair.

Correlation among selected variables included 
in the model
After further screening, seven variables were selected 
for model training based on the results of LASSO Cox 
regression analysis, univariate analysis, and clinical rel-
evance. These variables included plasma transfusion, cre-
atinine, operation time, age, WBC, ACC and CPB.

Pearson’s Chi-square test was used to assess variable 
associations, while the heatmap visualized the Pearson 
correlation coefficients among variables, illustrating the 
strength and direction of these relationships. The heat-
map presented Pearson’s correlation coefficients among 
variables, providing a visual depiction of the strength and 
direction of these correlations. The color gradient, rang-
ing from dark grey to dark red, represented the spectrum 
from weak to strong correlations. Each cell in the heat-
map was labeled with a Pearson’s correlation coefficient, 
quantifying the linear relationship between two variables. 
A coefficient of 1 indicated a perfect positive correlation, 
− 1 signified a perfect negative correlation, and 0 reflects 
no correlation. Asterisks were used to denote statistical 
significance, with a single asterisk (*) representing a p 
value of less than 0.05.

Pearson’s Chi-squared test demonstrated signifi-
cant correlations between creatinine and transfusion of 
plasma, WBC, operation time (p < 0.001, p < 0.001 and 
p = 0.016, respectively). The corresponding Pearson cor-
relation coefficients were 0.34, 0.35, and 0.17, indicating 
weak to moderate correlations (Fig.  3). Conversely, no 
significant correlations were observed between operation 
time and either age or transfusion of plasma (p > 0.05). 
Although a strong correlation was observed between 

Table 1 Comparison of perioperative conditions: variables selected through LASSO cox regression for initial screening in the training 
set

POHS postoperative hospital stay, ICUHS intensive care unit hospital stay, WBC white blood cell count, AST aspartate aminotransferase, BNP B-type natriuretic peptide, 
SII Systemic Immune-Inflammation Index, SRBC suspended red blood cells, CPB cardiopulmonary bypass, ACC  aortic cross-clamp

Variables No. of outcomes (%) No. of survivors (%) p value

Shock 0.007

 No 32 (84.21%) 95 (95.96%)

 Yes 6 (15.79%) 4 (4.04%)

Abdominal pain 0.043

 No 31 (81.58%) 92 (92.93%)

 Yes 7 (18.42%) 7 (7.07%)

Age 50.97 ± 8.32 48.52 ± 9.86 0.176

POHS (days) 12.29 ± 10.65 22.79 ± 14.79  < 0.001

ICUHS (days) 11.53 ± 10.56 12.54 ± 8.53 0.563

WBC (×  109/L) 13.85 ± 5.15 11.45 ± 4.06 0.012

AST (IU/L) 111.66 ± 326.96 39.51 ± 68.72 0.187

Creatinine (μmol/L) 111.87 ± 52.3 85.8 ± 34.5 0.006

Fibrinogen (g/L) 3.16 ± 2.09 3.07 ± 1.67 0.801

BNP (pg/mL) 992.75 ± 1194.83 971.16 ± 1546.08 0.931

SII 3696.2 ± 6274.47 2339.37 ± 2290.6 0.065

Operation time (min) 624.29 ± 177.61 524.05 ± 113.71 0.002

Intraoperative bleeding (ml) 947.58 ± 1158.87 582.65 ± 471.87 0.067

Transfusion of SRBC (U) 4.13 ± 3.51 3.35 ± 2.96 0.226

Transfusion of Plasma (ml) 948.46 ± 424.49 749.3 ± 375.54 0.014

CPB time (min) 308.16 ± 86.55 264.76 ± 63.88 0.007

ACC time (min) 172.62 ± 31.57 158.92 ± 50.50 0.057
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CPB and ACC (Pearson correlation coefficient: 0.79, p < 
0.001), each variable reflects distinct intraoperative risks 
in the surgical management of TAAD. ACC time pri-
marily represents the duration of direct aortic occlusion, 
which is closely associated with myocardial ischemia, dis-
tal organ hypoperfusion, and the extent of aortic repair. 
In contrast, CPB time encompasses the entire period of 
extracorporeal circulation and reflects systemic expo-
sure to non-physiological perfusion, inflammation, and 
coagulation disturbances. Therefore, both variables were 
retained in the model for their complementary prognos-
tic value. For the remaining variables, the correlation 
strengths were generally weak or lacked statistical signifi-
cance (Fig. 3).

The performance of the SVM model
After selecting the feature variables, the SMOTE 
method was applied to the training set to address 

data imbalance. Sensitivity analysis demonstrated that 
SMOTE substantially improved the predictive perfor-
mance (mean AUC increased from 0.8270 to 0.9343), 
along with reduced variability, confirming the robust-
ness and suitability of SMOTE in addressing data 
imbalance. Subsequently, the SVM algorithm was 
implemented, and model generalization was enhanced 
using tenfold cross-validation, with final validation per-
formed on the both internal and external test sets. The 
model demonstrated excellent performance, achieving 
AUC values exceeding 0.85 for the training and test 
sets, indicating strong discriminatory ability (Table  2, 
Fig. 4A and S2 A). Specifically, the training set achieved 
an AUC of 0.9137 (95% CI 0.9081–0.9203), while the 
internal test set achieved an AUC of 0.8533 (95% CI 
0.8503–0.8624), and the external test set achieved an 
AUC of 0.8770 (95% CI 0.8698–0.8982). The slightly 
lower AUC for the test sets suggests some performance 

Fig. 3 Correlation heatmap of variables in the model. CPB Cardiopulmonary bypass, ToPlasma transfusion of plasma. WBC White blood cell count, 
ACC Aortic cross‑clamp. ‘*’ denotes p < 0.05, ‘**’ denotes p < 0.01, ‘***’ denotes p < 0.001
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decline, but the difference remains within a reasonable 
range, with no significant signs of overfitting.

The model demonstrated consistent accuracy across 
both the training and test sets, with internal test set 
achieving slightly higher accuracy (training set: 0.8366, 
internal test set: 0.8481, external test set: 0.8030). Nota-
bly, the internal test set achieved a precision comparable 
to that of the external test set (0.8374 vs. 0.8235), and 
slightly lower than the training set (0.8696), highlight-
ing the model’ s robustness and reliability in predict-
ing survival among TAAD patients (Table 2, Fig. 4C, D, 
S2D). The precision–recall curves demonstrated similar 
shapes across data sets, with the training set achieving 
an AP of 0.9019. Slightly lower AP values were observed 
in the internal and external test sets (0.8789 and 0.8548, 
respectively), further supporting the model’s consistent 
performance and generalizability (Fig. 4B and S2B). The 
Brier Scores for the training and test sets were notably 
low, at 0.1213, 0.1417 and 0.1323, respectively, indicating 
well-calibrated probabilistic predictions. Performance 
metrics, including accuracy, precision, AUC, AP, Brier 
Score, and F1 Score showed comparable results among 
the training, internal and external test sets, demonstrat-
ing the model’ s robustness, reliability, and practical value 
in clinical applications (Fig. S1).

Furthermore, risk scores were calculated for all 244 
patients with TAAD using the SVM model. Based on the 
median risk score (0.2029), patients were divided into 
high-risk and low-risk groups. Survival analysis dem-
onstrated that patients in the low-risk group had sig-
nificantly better long-term survival outcomes compared 
to those in the high-risk group (p < 0.001, Fig. 5). These 
findings further highlight the clinical applicability of the 
predictive model.

SHAP interpretation and feature importance visualization
The SHAP method was employed to interpret the SVM 
model’s predictions and evaluate its clinical relevance. 
By quantifying the contribution of each feature, SHAP 

values provided insights into their impact on the model’s 
outputs. Feature importance analysis identified operation 
time as the most critical predictor of long-term survival 
in TAAD patients, highlighting the significant impact of 
intraoperative duration on postoperative outcomes and 
overall prognosis (Fig. 6A). Furthermore, the SHAP sum-
mary plot revealed that higher plasma transfusion vol-
ume, creatinine levels, age, WBC count, ACC time, and 
CPB time positively contributed to the model’s predicted 
risk, indicating their significant roles in influencing sur-
vival outcomes (Fig. 6B).

To validate the model’s interpretability, decision curves 
were used to illustrate individualized predictions of long-
term survival. The gray vertical line at 0 on the horizontal 
axis represented the model’s baseline. Figure  7A visual-
izes the decision-making process for TAAD survivors, 
while Fig.  7B illustrates it for patients with endpoint 
events.

Discussion
In this retrospective study, we developed an SVM-based 
machine learning model to predict long-term survival 
in TAAD patients. The model demonstrated strong per-
formance across training, internal test, and external test 
data sets. Based on the risk scores calculated from the 
predictive model, patients in low-risk group had signifi-
cantly better survival outcomes than those in high-risk 
group. SHAP summary plots identified several key pre-
dictors of long-term survival, including operation time, 
CPB time, ACC time and age. We further interpreted the 
individual decision-making process of the model using 
SHAP decision plots, offering deeper insights into the 
model’s predictions. By providing a comprehensive eval-
uation of perioperative factors, the model contributes to 
enhancing patient care quality and improve long-term 
survival outcomes.

TAAD is a life-threatening vascular emergency for 
which surgical repair remains the primary treatment. 
However, its prognostic management poses significant 

Table 2 Performance of the SVM model between training set and test set

AUC  area under the curve, SVM support vector machine, CI confidence interval, AP average precision

Metrics SVM (training set) SVM (internal test set) SVM (external test set)

AUC 0.9137 0.8533 0.8770

95% CI (0.9081–0.9203) (0.8503–0.8624) (0.8698–0.8982)

Accuracy 0.8366 0.8481 0.8030

Precision 0.8696 0.8374 0.8235

Recall 0.8421 0.7933 0.7651

F1 score 0.8290 0.8148 0.7928

Brier score 0.1213 0.1417 0.1323

AP 0.9019 0.8789 0.8548
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Fig. 4 Comprehensive performance evaluation of the SVM model. A ROC curve with AUC values for the training and internal test sets; B PR curve 
with AP values for the training and internal test sets; C accuracy curve illustrating the performance across different thresholds for the training 
and internal test sets; D precision curve showing the precision at various thresholds for the training and internal test sets. SVM Support vector 
machine, ROC Receiver operating characteristic
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challenges, particularly in mortality risk. Several prog-
nostic indicators have been identified in previous stud-
ies to support risk stratification. For instance, Zhang 
et al. identified systolic blood pressure at admission, NT-
proBNP, and white blood cell count as independent fac-
tors affecting in-hospital mortality among TAAD patients 

[33]. Similarly, numerous studies have highlighted preop-
erative indicators such as fibrinogen, BUN, NLR, PLR, 
D-dimer, UA, and CRP as prognostic markers for both 
short-term and long-term survival in TAAD patients 
[10–12, 34–36]. However, the factors affecting patient 
survival are varied, and a single preoperative indicator 

Fig. 4 continued



Page 13 of 17Cai et al. European Journal of Medical Research          (2025) 30:277  

often fails to capture the complexity of a patient’s condi-
tion. Consequently, these indicators have not been widely 
adopted in clinical practice. In addition, traditional Cox 
and logistic regression methods, although commonly 
used to identify prognostic indicators, have inherent 
limitations. These methods face challenges in handling 
complex data and exhibit limited generalizability, which 
reduces their predictive accuracy and clinical utility [37, 
38].

ML methods have gained interest for TAAD prognosis 
evaluation, but research is still in its early stages. Zhang 
et al. developed a Treebag model to predict 1-year mor-
tality in TAAD patients, using 51 clinical characteristics, 
including blood markers at admission [39]. Nevertheless, 
exclusively relying on preoperative indicators may over-
look the critical impact of intraoperative factors on sur-
vival outcomes in patients with TAAD. Moreover, most 
recent ML studies have primarily focused on short-term 
mortality and postoperative complications, while long-
term survival prediction in TAAD patients remains unex-
plored [40–42].

In this study, we employed an interpretable machine 
learning approach to explore the relationship between 
multiple clinical variables and long-term survival in 
patients with TAAD. In addition to preoperative indi-
cators, we specifically incorporated key intraoperative 
factors—such as operation time, CPB, and ACC—to 
enhance the assessment of survival outcomes. Based 
on SVM algorithm, the SHAP method was applied to 
interpret feature importance and its relationship with 

long-term mortality. SHAP decision plots were used to 
further illustrate the model’s decision-making process.

Our findings identified operation time, CPB, and ACC 
as the most significant predictors of long-term progno-
sis in patients with TAAD. These surgical time-related 
parameters not only reflected the complexity of the sur-
gical procedure but also indicated the overall physiologi-
cal burden experienced during the operation. Prolonged 
durations were associated with organ ischemia, systemic 
inflammatory responses, and cardiopulmonary stress, all 
of which contributed to an increased risk of postopera-
tive organ dysfunction and delayed recovery, ultimately 
compromising long-term survival outcomes [43, 44].

Other important predictors included age, plasma 
transfusion volume, creatinine, and WBC count. Severe 
TAAD cases or prolonged operation time were often 
associated with increased blood product requirements, 
which in turn were linked to poorer outcomes [45]. Ele-
vated WBC count, along with advanced age and higher 
creatinine levels, reflected the patients’ overall condition, 
preoperative immune and inflammatory status as well as 
renal function—all of which were associated with worse 
prognosis in TAAD patients [14, 46].

Despite these contributions, this study has several limi-
tations. First, although the SVM model demonstrated 
good generalization across two-center data sets, the lim-
ited sample size and potential selection bias highlight the 
need for larger-scale studies to validate these findings. 
Second, although the study incorporated a range of pre-
operative and intraoperative variables, imaging-based 

Fig. 5 Kaplan–Meier survival curves of aortic survival stratified by risk value in 244 TAAD patients (with log‑rank test). AS Aortic survival
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indicators that directly reflect the severity of TAAD were 
not included due to limited access to such data. This may 
have restricted the model’s ability to fully capture disease 
complexity and improve predictive accuracy.

Conclusion
This study is the first to develop and validate a machine 
learning-based prognostic model for long-term survival 
in TAAD patients. The model demonstrated strong 

Fig. 6 SHAP analysis of SVM model. A Ranking feature importance based on the absolute mean values of SHAp values; B scatter plot of feature 
distributions using the SHAP analysis. WBC White blood cell count, ToPlasma transfusion of plasma, CPB Cardiopulmonary bypass, ACC Aortic 
cross‑clamp
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predictive performance among training, internal test 
and external test groups, supporting its clinical poten-
tial. It offers clinicians a tool for assessing long-term 
outcomes in TAAD patients.
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