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Diagnosis accuracy of machine learning Rl

for idiopathic pulmonary fibrosis: a systematic
review and meta-analysis
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Abstract

Background The diagnosis of idiopathic pulmonary fibrosis (IPF) is complex, which requires lung biopsy, if neces-
sary, and multidisciplinary discussions with specialists. Clinical diagnosis of the two ailments is particularly challeng-
ing due to the impact of interobserver variability. Several studies have endeavored to utilize image-based machine
learning to diagnose IPF and its subtype of usual interstitial pneumonia (UIP). However, the diagnostic accuracy of this
approach lacks evidence-based support.

Objective We conducted a systematic review and meta-analysis to explore the diagnostic efficiency of image-based
machine learning (ML) for IPF.

Data sources and methods \We comprehensively searched PubMed, Cochrane, Embase, and Web of Science
databases up to August 24, 2024. During the meta-analysis, we carried out subgroup analyses by imaging source
(computed radiography/computed tomography) and modeling type (deep learning/other) to evaluate its diagnostic
performance for IPF.

Results The meta-analysis findings indicated that in the diagnosis of IPF, the C-index, sensitivity, and specificity of ML
were 0.93 (95% C1 0.89-0.97), 0.79 (95% Cl 0.73-0.83), and 0.84 (95% Cl 0.79-0.88), respectively. The sensitivity of radi-
ologists/clinicians in diagnosing IPF was 0.69 (95% Cl 0.56-0.79), with a specificity of 0.93 (95% C| 0.74-0.98). For UIP
diagnosis, the C-index of ML was 0.91 (95% Cl 0.87-0.94), with a sensitivity of 0.92 (95% CI 0.80-0.97) and a specific-
ity of 0.92 (95%Cl 0.82-0.97). In contrast, the sensitivity of radiologists/clinicians in diagnosing UIP was 0.69 (95% Cl
0.50-0.84), with a specificity of 0.90 (95% Cl 0.82-0.94).

Conclusions Image-based machine learning techniques demonstrate robust data processing and recognition capa-
bilities, providing strong support for accurate diagnosis of idiopathic pulmonary fibrosis and usual interstitial pneu-
monia. Future multicenter large-scale studies are warranted to develop more intelligent evaluation tools to further
enhance clinical diagnostic efficiency.

Trial registration This study protocol was registered with PROSPERO (CRD42022383162).
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic inter-
stitial lung disease of unknown origin, marked by pro-
gressive lung constriction. A study published in 2021
indicated that the incidence rate ranged from 0.9 to
13.0 per 100,000 people, and the prevalence rate var-
ied from 3.3 to 45.1 per 100,000 people [1]. IPF, as the
most prevalent idiopathic interstitial pneumonia (IIP),
is linked to the poorest prognosis, and the estimated
median survival period post-diagnosis is 3-5 years [2—
5]. Early diagnosis is imperative for tailoring treatment
plans, such as choosing between anti-fibrotic treatment
and the treatment of pulmonary fibrosis due to other
causes [6]. The diagnosis of IPF necessitates multidis-
ciplinary discussions and collaborations among clini-
cians, radiologists, and pathologists [7]. However, the
prolonged time from referral to multidisciplinary diag-
nosis is notable due to interobserver variabilities [8, 9].
Therefore, a diagnostic method that mitigates observer
variability, and can accurately and swiftly differentiate
between IPF and non-IPF interstitial lung diseases, is
necessary in clinical practice.

The Diagnosis and Treatment Guidelines for Idiopathic
Pulmonary Fibrosis for the first time included radiologi-
cal UIP patterns in the definition of IPF, emphasizing
the importance and diagnostic role of identifying high-
resolution computed tomography (HRCT) UIP patterns.
With the increasing importance of medical imaging in
precision medicine for disease diagnosis, prognosis,
and treatment planning [10], computed tomography
(CT) emerges as a valuable tool providing visual data to
enhance decision-making [11]. However, qualitative CT
assessment remains challenging, leading to common
discrepancies even among experienced experts [12, 13].
Hence, there is an urgent demand for an automated clini-
cal tool that can assist clinicians in making precise and
timely diagnoses.

Computer-aided diagnosis empowers doctors to lever-
age information technology (IT) to interpret and utilize
various imaging techniques. The primary objective is to
shorten diagnosis time and enhance accuracy, with IT
serving as a supportive or even independent diagnos-
tic option [14]. Computer-aided diagnostic algorithms
fall within the realm of artificial intelligence (AI), mim-
icking human thinking. With the increasing wealth of
imaging data and the availability of computing resources,
Al is gaining popularity [15]. Quantitative imaging tech-
niques in medical imaging are increasingly used in an
exponential way [16]. In this context, some researchers
are striving to develop tools that can assist in the diagno-
sis of IPF and UIP. Nevertheless, there is presently insuf-
ficient evidence-based backing for the detailed diagnostic
value. To address this gap, we conducted a systematic
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review and meta-analysis to explore the diagnostic effi-
cacy of image-based machine learning (ML) for IPF and
UIP.

Methods

Study registration

Our study adhered to the preferred reporting guidelines
(PRISMA 2020) for systematic review and was prospec-
tively registered on Prospero (CRD42022383162).

Eligibility criteria
Inclusion criteria

(1) The subjects were patients with suspected intersti-
tial lung disease.

(2) The types of studies included case—control study,
cohort study, case—control study, and case-cohort
study.

(3) A comprehensive ML model was developed to
identify the prognosis of IFP or UPF or interstitial
lung disease.

(4) Studies lacking external validation are also incorpo-
rated.

(5) Various ML studies published in the same dataset.

(6) Studies reported in English.

Exclusion criteria

(1) Research types: Meta-analysis, review, guidelines,
expert opinions, and conference abstracts published
without peer review.

(2) Only an analysis of risk factors was conducted, and
a comprehensive ML model was not constructed.

(3) The following outcome indexes to assess the accu-
racy of ML model are missing.

(4) Validation of the maturity scale only.

Data sources and search strategy

On August 24, 2024, we systematically searched relevant
literature in Cochrane, Embase, and Web of Science
databases using a combination of subject terms and free
words (with the start time being the establishment time
of each database). Detailed information regarding the
search materials is available in Table S1.

Study selection and data extraction

We imported the identified literature into Endnote20.0
and, following the removal of duplicates, checked the
titles and abstracts. Subsequently, we downloaded the
full texts, thoroughly read them, and selected documents
that aligned with the objectives of our study. Before data
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Fig. 1 The literature screening process

extraction, we established a standardized data extrac-
tion table to capture essential information such as author
details, publication year, study type, diagnostic events,
training set, validation set, type of model used, C-index,
sensitivity, and specificity. The above literature screening
and data extraction were carried out by two research-
ers (LC & YC) independently, and cross-checking was
carried out after completion. In case of any dispute, the
involvement of the third researcher (LPC) was consulted
to assist in the decision.

Risk of bias in studies
We utilized QUADAS-2 to evaluate the risk of bias in the
original studies. This evaluation comprised numerous

questions distributed across four distinct areas: par-
ticipants, predictive variables, results, and statistical
analysis. These areas encompassed 2, 3, 6, and 9 specific
questions, respectively, each with three response options
(yes/possibly yes, no/probably no, and no information). A
domain was deemed to be at high risk if at least one ques-
tion was answered by no or probably no. Conversely, to
be classified as low risk, all questions in a domain should
be answered by yes or possibly yes. The overall risk of
bias was considered low when all areas were deemed low
risk and high when at least one domain was categorized
as high risk.

The two researchers (LC & XLH) independently con-
ducted the bias risk assessment using QUADAS-2 and
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Fig. 2 (A) Risk of Bias Summary for Included Primary Studies, and (B) Risk of Bias Graph for Included Primary Studies

cross-checked their results after completion. In case of
any dispute, the third researcher (CW) was consulted to
assist in the adjudication.

Outcomes

The C-index was used as the primary outcome to depict
the prediction precision of the ML models. Meanwhile,
the sample size of the case group and the control group
was seriously unbalanced, which was insufficient to
reflect the prediction accuracy of the case group when
the difference was enlarged. Therefore, the sensitivity and
specificity of ML are also used as outcome measures.

Synthesis methods

We performed a meta-analysis to evaluate the overall
accuracy indicator (c-index) for assessing ML models. In
instances where the original studies did not provide a 95%
confidence interval and standard error for the c-index,
we consulted the research of Debray TP et al. [17] to
estimate its standard error. Given the variations in the
included variables and the inconsistency of parameters

across different ML models, the random effects model
was prioritized for the meta-analysis of the c-index.

Additionally, we conducted a meta-analysis of sensitiv-
ity and specificity employing a bivariate mixed-effects
model. During the meta-analysis process, sensitivity and
specificity were evaluated based on the diagnostic four-
fold table. However, a majority of original studies did not
report the diagnostic fourfold table. In such instances, we
utilized two approaches to calculate the diagnostic four-
fold table: 1. The diagnostic table was computed based on
sensitivity, specificity, precision, and the number of cases;
2. Extraction of sensitivity and specificity were extracted
based on the optimal Youden’s index, followed by calcula-
tion with the number of cases. The meta-analysis for this
study was conducted using R 4.2.0 (R development Core
Team, Vienna, http://www.R-project.org).

Results

Study selection

A total of 3572 articles were retrieved in the initial search.
Following the elimination of duplicates and irrelevant
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Table 2 Quality evaluation of the trials
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Risk of bias assessment
bias?

The trial to be evaluated: Is there any bias in the con-
duct or interpretation of the trial to be evaluated?

Will there be bias in the implementation and inter-

pretation of the gold standard?

Is there any bias in the flow of the cases?

Evaluation of clinical practicability quel

que2

que3

Case selection: Does the selection of cases produce

Quel Were consecutive or random cases included?
Que2
Que3

QueT

Was the case—control study design avoided?
Did the study avoid inappropriate exclusions?

Was the interpretation of the results of the trial
to be evaluated done without knowing the results
of the gold standard trial?

Que2 Ifathreshold was used, was it predetermined?

Quel Can the gold standard correctly distinguish

between target disease states?

Que2 Was blinding used in the interpretation of the gold

standard results?

Quel Was there an appropriate time interval
between the trial to be evaluated and the gold
standard?

Que2

Que3

Did all patients receive the same gold standard?
Were all cases included in the analysis?

Matching of relevant included patients and back-
ground with evaluation questions

Evaluation of the matching between the implemen-
tation and interpretation of the trial to be evaluated
and the evaluation questions

Applicability evaluation of gold standard

articles, 74 articles underwent a detailed full-text read-
ing. Among them, we excluded unpublished conference
abstracts, studies that only performed image segmenta-
tion and reconstruction, and studies that did not assess
the diagnostic performance of outcome indicators for the
disease. Ultimately, 16 articles [18—33] were included in
this study, as illustrated in Fig. 1.

Study characteristics

The 16 included studies were published from 2004 to
2024, encompassing a total of 7209 study subjects, pre-
dominantly from North America, Europe, and Japan.
Among these, 6 articles [18—22] focused on the diagno-
sis of IPF (Table 1). Notably, one of these articles [21]
employed chest X-ray as a modeling variable, while the
remaining four utilized high-resolution CT. The remain-
ing 10 articles [23-28] centralized around the diagno-
sis of UIP. Within this subset, eight articles [23, 25-27]
leveraged ML for the diagnosis of UIP patterns under
HRCT, and two articles [24, 28] predicted pathological
UIP patterns, all employing high-resolution CT as mode-
ling variables. Across the 11 pieces of literature, ML algo-
rithms predominantly included artificial neural network
(ANN), convolutional neural network (CNN), and vector
space model (SVM). Notably, seven studies [20-26] com-
pared the diagnostic performance between human radi-
ologists/clinical experts and ML models, as illustrated in
Fig. 2.

Risk of bias in studies

All included studies adopted a case—control design, and
only one study adopted a non-deep learning method to
construct a model. In the construction of conventional
ML, non-deep learning modeling variables needed to
be manually encoded, which may introduce a higher
bias risk, especially in the context of case—control
studies. The impact of other image-based deep learn-
ing on case—control studies was relatively minimal.
Consequently, there is a heightened risk of bias in the
selection of cases. Various ML methods in the primary
studies employed their respective evaluation criteria for
the interpretation of the gold standard. This variability
in evaluation criteria may introduce bias. However, the
impact is considered low when implementing or inter-
preting the index tests, and we believe there is no high
bias risk (Tables 2 and 3). Detailed assessment results
are illustrated in Fig. 2.

Meta-analysis

IPF

ML model In the diagnosis of IPF, the combined
C-index, sensitivity, and specificity of ML were 0.93 (95%
CI 0.89-0.97), 0.79 (95% CI 0.73-0.83), and 0.84 (95%
CI 0.79-0.88), respectively. Notably, the model with the
highest diagnostic performance was the deep learning
model (CT) proposed by Wenxi Yu [21], with a C-index of
0.99 (95% CI 0.97-1), as illustrated in Figs. 3 and 4.
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Radiologists/clinicians Among the six included pieces
of literature on IPF [18-22], three of them [20-22] com-
pared ML with human experts. In these studies, the sensi-
tivity of radiologists/clinicians in the diagnosis of IPF was
notably lower compared to that of ML. However, it was
essential to note that due to the small sample size, only
observational analyses were performed. In these three
pieces of literature, the sensitivity of radiologists/clini-
cians diagnosing without the assistance of ML models
ranged from 57 to 85%, while the specificity ranged from
75 to 98% (Fig. 5).

uip
ML model In the diagnosis of UIP, the combined
C-index, sensitivity, and specificity of ML were 0.91 (95%
CI 0.87-0.94), 0.92 (95% CI 0.80-0.97) and 0.92 (95% CI
0.82-0.97), respectively. Notably, Aya Fukushima’s deep
learning model exhibits the highest diagnostic perfor-
mance, boasting a C-index of 0.99 (95% CI 0.97 ~ 1.02), as
illustrated in Figs. 6 and 7A.

We utilized funnel plot analysis to investigate publica-
tion bias concerning machine learning diagnoses of UIP,
and the findings from the funnel plot along with Egger’s
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test reveal a significant publication bias within each vali-
dation set of the models (P<0.05), as illustrated in Fig. 8.

Radiologists/clinicians Ten pieces of literature did not
explore the joint use of doctors and ML models in the
diagnosis of UIP. The diagnostic sensitivity of radiologists/
clinicians based solely on HRCT was reported to be 0.69
(95% CI 0.50 ~0.84), which was comparable to the diag-
nostic sensitivity of ML models, as depicted in Fig. 7B.

Discussion

Summary of the main findings

We have observed that the primary source of IPF for ML
remains HRCT, with only a limited number of studies
utilizing chest X-rays. In this study, specifically, only one
study employed chest X-rays as a variable [21], making
direct comparisons with CT challenging. The ML meth-
ods employed include convolutional neural networks,
deep learning, and random forest. In the diagnosis of
IPF, ML demonstrates superior sensitivity and specific-
ity compared to clinicians/radiologists. For the diagnosis
of UIP, whether examining the UIP pattern on HRCT or
the pathological UIP pattern, variables are consistently
derived from HRCT. The primary ML methods include
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Fig. 6 Forest Map of Meta-Analysis of C-index for Machine Learning in Diagnosis of UIP

convolutional neural networks, and deep learning, with
a smaller representation of extreme gradient boost-
ing (XGboost). In UIP diagnosis, the diagnostic sen-
sitivity and specificity of ML align closely with those of
clinicians/radiologists.

Comparison with previous studies

IPF needs to be distinguished not only from various
interstitial lung disease (ILD) but also from specific
types of IIP. Existing research indicates that IPF com-
prises 47—-71% of IIP cases, whereas non-specific Inter-
stitial Pneumonia (NSIP) accounts for 13-30% of IIP
cases [34, 35]. The subjects in five included studies are
patients with ILD or diffuse lung lesions. The primary
outcome indicators focus on the sensitivity, specificity,
and diagnostic performance of ML in the detection of
IPF among various ILDs. Among these studies, three
[20-22] compared ML with human experts, reveal-
ing significantly lower diagnostic sensitivity of human
experts compared to ML (Fig. 7B). The study by Raghu
[12] found that, despite all 95 cases being confirmed as
IPF by surgical lung biopsy, interstitial disease experts’
sensitivity in diagnosing IPF based on CT features was
78.5%. Another study [36, 37] reported low sensitivity

of human experts in the diagnosis of interstitial pneu-
monia or interstitial pulmonary fibrosis combined with
emphysema. Therefore, HRCT-based deep learning
is deemed meaningful for diagnosing IPF. Its pooled
diagnostic sensitivity is higher than that of clinical/
radiological experts, potentially reducing interobserver
variability and shortening the time from suspicion to
diagnosis. It proves advantageous in the detection of
IPF among various ILDs.

Regarding the diagnosis of UIP, the IPF Guidelines
published in 2011 emphasized the role of identifying
HRCT manifestations, including UIP patterns, as one
of the independent diagnostic criteria. Studies compar-
ing pathology with HRCT confirmed the accuracy of
HRCT diagnosis of classic UIP at 80—-90%. However, in
some early UIP diagnosis studies, the diagnostic speci-
ficity was relatively low, at 43-78%. This decrease in
specificity is related to patients with no honeycombing
or atypical features on CT, limiting radiologists’ ability
to diagnose UIP based solely on CT. Among the studies
included in this analysis, the pooled sensitivity of ML
for diagnosing UIP is 92% (95% CI 0.80 ~0.97), with a
specificity of 92% (95% CI 0.82 ~0.97). The sensitivity
and diagnostic performance of ML in distinguishing
UIP from non-UIP are comparable to those of human
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Fig. 7 Forest Map of Meta-Analysis of Sensitivity and Specificity for Machine Learning in Diagnosis of UIP. (A Meta-Analysis of the Sensitivity
and Specificity of Machine Learning in Diagnosis of UIP. B Sensitivity and Specificity of Human Expert Diagnosis of UIP)
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Fig. 8 Funnel plot of Meta-Analysis of C-index for Machine Learning
in Diagnosis of UIP

experts. In the future, ML algorithms may have an
advantage in diagnosing potential UIP and non-UIP
patterns.

Types of ML

Common ML models are applicable to interpretable
clinical features, and some researchers have conducted
ML studies based on imageological data. However, in the
implementation process, manual image region segmen-
tation and texture feature extraction are required, which
may introduce bias due to the influence of the observer’s
prior knowledge. Deep learning is primarily applied to
the identification of medical images, diagnosis, and prog-
nosis of diseases, demonstrating a higher diagnostic rate.
In our study, we included studies on both ML and deep
learning. Due to the limited number of included studies,
we did not conduct separate meta-analyses for ML and
deep learning, but only briefly reviewed them. Therefore,
more studies are desired to explore whether ML meth-
ods constructed based on conventional interpretable
clinical features and images will outperform deep learn-
ing. Another advantage of deep learning is its capacity to
intelligently diagnose diseases, providing crucial insights
for the development of intelligent tools.

Advantages and limitations of the study

The strength of our study lies in being the first systematic
review of the diagnostic value of ML in IPF and UIP, pro-
viding a comprehensive summary of diagnostic results
compared with clinical/radiological findings. However,
certain limitations should be acknowledged. Firstly,
although a comprehensive systematic search was con-
ducted, the number of studies included remains relatively

Page 14 of 16

low, which calls for careful interpretation of the findings.
Secondly, the sensitivity analysis indicated that the pre-
dictive performance was not significantly influenced by
chest radiography, which was one of the variables along-
side others from high-resolution CT. Thirdly, during the
image acquisition process, the image parameters were
not modified, and preliminary experiments were carried
out with varying image parameters. Consequently, it was
not feasible to eliminate the heterogeneity resulting from
the transitional setup of the equipment. Lastly, high het-
erogeneity presents a considerable challenge in machine
learning-based meta-analysis. Given the restricted num-
ber of included studies, we were unable to further investi-
gate this concern.

Conclusions

This study systematically evaluated the diagnos-
tic performance of machine learning (ML) based on
high-resolution CT imaging for idiopathic pulmonary
fibrosis (IPF) and usual interstitial pneumonia (UIP).
The results demonstrate that ML models leverage
their strengths in data processing and pattern recog-
nition to achieve rapid and efficient disease classifica-
tion with high sensitivity and specificity. This highlights
the potential of Al-based imaging diagnostic tools in
enhancing early disease screening efficiency and reduc-
ing human error.

From a clinical standpoint, machine learning mod-
els can proficiently tackle the observer variability that is
inherent in conventional diagnostic methods. Specifi-
cally, they can improve both consistency and accuracy in
multidisciplinary collaborative diagnoses. Furthermore,
this study conducts a systematic comparison between
machine learning and traditional clinical radiologi-
cal diagnostic approaches, validating the capability of
machine learning to enhance diagnostic efficiency for IPF
and UIP. This could serve as a foundation for its incor-
poration into future clinical practice. Given these find-
ings, prospective clinical applications might include the
integration of machine learning algorithms into hospital
imaging analysis systems, facilitating expedited and more
precise early screening for pulmonary fibrosis, minimiz-
ing diagnostic cycles, and ultimately enhancing patient
outcomes.

Nevertheless, the utilization of these technologies
necessitates additional extensive models and multi-
center clinical trials to further confirm their applicabil-
ity and effectiveness in diverse clinical environments.
Consequently, although the existing findings under-
score the considerable promise of machine learning, its
broad implementation in clinical practice still demands
thoughtful advancement.
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