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Abstract 

Background The diagnosis of idiopathic pulmonary fibrosis (IPF) is complex, which requires lung biopsy, if neces-
sary, and multidisciplinary discussions with specialists. Clinical diagnosis of the two ailments is particularly challeng-
ing due to the impact of interobserver variability. Several studies have endeavored to utilize image-based machine 
learning to diagnose IPF and its subtype of usual interstitial pneumonia (UIP). However, the diagnostic accuracy of this 
approach lacks evidence-based support.

Objective We conducted a systematic review and meta-analysis to explore the diagnostic efficiency of image-based 
machine learning (ML) for IPF.

Data sources and methods We comprehensively searched PubMed, Cochrane, Embase, and Web of Science 
databases up to August 24, 2024. During the meta-analysis, we carried out subgroup analyses by imaging source 
(computed radiography/computed tomography) and modeling type (deep learning/other) to evaluate its diagnostic 
performance for IPF.

Results The meta-analysis findings indicated that in the diagnosis of IPF, the C-index, sensitivity, and specificity of ML 
were 0.93 (95% CI 0.89–0.97), 0.79 (95% CI 0.73–0.83), and 0.84 (95% CI 0.79–0.88), respectively. The sensitivity of radi-
ologists/clinicians in diagnosing IPF was 0.69 (95% CI 0.56–0.79), with a specificity of 0.93 (95% CI 0.74–0.98). For UIP 
diagnosis, the C-index of ML was 0.91 (95% CI 0.87–0.94), with a sensitivity of 0.92 (95% CI 0.80–0.97) and a specific-
ity of 0.92 (95%CI 0.82–0.97). In contrast, the sensitivity of radiologists/clinicians in diagnosing UIP was 0.69 (95% CI 
0.50–0.84), with a specificity of 0.90 (95% CI 0.82–0.94).

Conclusions Image-based machine learning techniques demonstrate robust data processing and recognition capa-
bilities, providing strong support for accurate diagnosis of idiopathic pulmonary fibrosis and usual interstitial pneu-
monia. Future multicenter large-scale studies are warranted to develop more intelligent evaluation tools to further 
enhance clinical diagnostic efficiency.

Trial registration This study protocol was registered with PROSPERO (CRD42022383162).
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a chronic inter-
stitial lung disease of unknown origin, marked by pro-
gressive lung constriction. A study published in 2021 
indicated that the incidence rate ranged from 0.9 to 
13.0 per 100,000 people, and the prevalence rate var-
ied from 3.3 to 45.1 per 100,000 people [1]. IPF, as the 
most prevalent idiopathic interstitial pneumonia (IIP), 
is linked to the poorest prognosis, and the estimated 
median survival period post-diagnosis is 3–5 years [2–
5]. Early diagnosis is imperative for tailoring treatment 
plans, such as choosing between anti-fibrotic treatment 
and the treatment of pulmonary fibrosis due to other 
causes [6]. The diagnosis of IPF necessitates multidis-
ciplinary discussions and collaborations among clini-
cians, radiologists, and pathologists [7]. However, the 
prolonged time from referral to multidisciplinary diag-
nosis is notable due to interobserver variabilities [8, 9]. 
Therefore, a diagnostic method that mitigates observer 
variability, and can accurately and swiftly differentiate 
between IPF and non-IPF interstitial lung diseases, is 
necessary in clinical practice.

The Diagnosis and Treatment Guidelines for Idiopathic 
Pulmonary Fibrosis for the first time included radiologi-
cal UIP patterns in the definition of IPF, emphasizing 
the importance and diagnostic role of identifying high-
resolution computed tomography (HRCT) UIP patterns. 
With the  increasing importance  of  medical  imaging  in 
precision medicine for disease diagnosis, prognosis, 
and treatment planning [10], computed tomography 
(CT) emerges as a valuable tool providing visual data to 
enhance decision-making [11]. However, qualitative CT 
assessment remains challenging, leading to common 
discrepancies even among experienced experts [12, 13]. 
Hence, there is an urgent demand for an automated clini-
cal tool that can assist clinicians in making precise and 
timely diagnoses.

Computer-aided diagnosis empowers doctors to lever-
age information technology (IT) to interpret  and utilize 
various imaging techniques. The primary objective is to 
shorten diagnosis time and enhance accuracy, with IT 
serving as a supportive  or even independent diagnos-
tic option [14]. Computer-aided diagnostic algorithms 
fall  within the realm  of  artificial intelligence (AI), mim-
icking  human thinking. With the increasing wealth of 
imaging data and the availability of computing resources, 
AI is gaining popularity [15]. Quantitative imaging tech-
niques in medical imaging are increasingly used in an 
exponential way [16]. In this context, some researchers 
are striving to develop tools that can assist in the diagno-
sis of IPF and UIP. Nevertheless, there is presently insuf-
ficient evidence-based backing for the detailed diagnostic 
value. To address this gap, we conducted a  systematic 

review and meta-analysis to explore the diagnostic effi-
cacy of image-based machine learning (ML) for IPF and 
UIP.

Methods
Study registration
Our study adhered to the preferred reporting guidelines 
(PRISMA 2020) for systematic review and was prospec-
tively registered on Prospero (CRD42022383162).

Eligibility criteria
Inclusion criteria

(1) The subjects were patients with suspected intersti-
tial lung disease.

(2) The types of studies included case–control study, 
cohort study, case–control study, and case-cohort 
study.

(3) A comprehensive ML model was developed to 
identify the prognosis of IFP or UPF or interstitial 
lung disease.

(4) Studies lacking external validation are also incorpo-
rated.

(5) Various ML studies published in the same dataset.
(6) Studies reported in English.

Exclusion criteria

(1) Research types: Meta-analysis, review, guidelines, 
expert opinions, and conference abstracts published 
without peer review.

(2) Only an analysis of risk factors was conducted, and 
a comprehensive ML model was not constructed.

(3) The following outcome indexes to assess the accu-
racy of ML model are missing.

(4) Validation of the maturity scale only.

Data sources and search strategy
On August 24, 2024, we systematically searched relevant 
literature in Cochrane, Embase, and Web of Science 
databases using a combination of subject terms and free 
words (with the start time being the establishment time 
of each database). Detailed information regarding the 
search materials is available in Table S1.

Study selection and data extraction
We imported the identified literature into Endnote20.0 
and, following the removal of duplicates, checked the 
titles and abstracts. Subsequently, we downloaded the 
full texts, thoroughly read them, and selected documents 
that aligned with the objectives of our study. Before data 
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extraction, we established a standardized data extrac-
tion table to capture essential information such as author 
details, publication year, study type, diagnostic events, 
training set, validation set, type of model used, C-index, 
sensitivity, and specificity. The above literature screening 
and data extraction were carried out by two research-
ers (LC & YC) independently, and cross-checking was 
carried out after completion. In case of any dispute, the 
involvement of the third researcher (LPC) was consulted 
to assist in the decision.

Risk of bias in studies
We utilized QUADAS-2 to evaluate the risk of bias in the 
original studies. This evaluation comprised numerous 

questions distributed across four distinct areas: par-
ticipants, predictive variables, results, and statistical 
analysis. These areas encompassed 2, 3, 6, and 9 specific 
questions, respectively, each with three response options 
(yes/possibly yes, no/probably no, and no information). A 
domain was deemed to be at high risk if at least one ques-
tion was answered by no or probably no. Conversely, to 
be classified as low risk, all questions in a domain should 
be answered by yes or possibly yes. The overall risk of 
bias was considered low when all areas were deemed low 
risk and high when at least one domain was categorized 
as high risk.

The two researchers (LC & XLH) independently con-
ducted the bias risk assessment using QUADAS-2 and 

Fig. 1 The literature screening process
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cross-checked their results after completion. In case of 
any dispute, the third researcher (CW) was consulted to 
assist in the adjudication.

Outcomes
The C-index was used as the primary outcome to depict 
the prediction precision of the ML models. Meanwhile, 
the sample size of the case group and the control group 
was seriously unbalanced, which was insufficient to 
reflect the prediction accuracy of the case group when 
the difference was enlarged. Therefore, the sensitivity and 
specificity of ML are also used as outcome measures.

Synthesis methods
We performed a meta-analysis to evaluate the overall 
accuracy indicator (c-index) for assessing ML models. In 
instances where the original studies did not provide a 95% 
confidence interval and standard error for the c-index, 
we consulted the research of Debray TP et  al. [17] to 
estimate its standard error. Given the variations in the 
included variables and the inconsistency of parameters 

across different ML models, the random effects model 
was prioritized for the meta-analysis of the c-index.

Additionally, we conducted a meta-analysis of sensitiv-
ity and specificity employing a bivariate mixed-effects 
model. During the meta-analysis process, sensitivity and 
specificity were evaluated based on the diagnostic four-
fold table. However, a majority of original studies did not 
report the diagnostic fourfold table. In such instances, we 
utilized two approaches to calculate the diagnostic four-
fold table: 1. The diagnostic table was computed based on 
sensitivity, specificity, precision, and the number of cases; 
2. Extraction of sensitivity and specificity were extracted 
based on the optimal Youden’s index, followed by calcula-
tion with the number of cases. The meta-analysis for this 
study was conducted using R 4.2.0 (R development Core 
Team, Vienna, http:// www.R- proje ct. org).

Results
Study selection
A total of 3572 articles were retrieved in the initial search. 
Following the elimination of duplicates and irrelevant 

Fig. 2 (A) Risk of Bias Summary for Included Primary Studies, and (B) Risk of Bias Graph for Included Primary Studies

http://www.R-project.org
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articles, 74 articles underwent a detailed full-text read-
ing. Among them, we excluded unpublished conference 
abstracts, studies that only performed image segmenta-
tion and reconstruction, and studies that did not assess 
the diagnostic performance of outcome indicators for the 
disease. Ultimately, 16 articles [18–33] were included in 
this study, as illustrated in Fig. 1.

Study characteristics
The 16 included studies were published from 2004 to 
2024, encompassing a total of 7209 study subjects, pre-
dominantly from North America, Europe, and Japan. 
Among these, 6 articles [18–22] focused on the diagno-
sis of IPF (Table  1). Notably, one of these articles [21] 
employed chest X-ray as a modeling variable, while the 
remaining four utilized high-resolution CT. The remain-
ing 10 articles [23–28] centralized around the diagno-
sis of UIP. Within this subset, eight articles [23, 25–27] 
leveraged ML for the diagnosis of UIP patterns under 
HRCT, and two articles [24, 28] predicted pathological 
UIP patterns, all employing high-resolution CT as mode-
ling variables. Across the 11 pieces of literature, ML algo-
rithms predominantly included artificial neural network 
(ANN), convolutional neural network (CNN), and vector 
space model (SVM). Notably, seven studies [20–26] com-
pared the diagnostic performance between human radi-
ologists/clinical experts and ML models, as illustrated in 
Fig. 2.

Risk of bias in studies
All included studies adopted a case–control design, and 
only one study adopted a non-deep learning method to 
construct a model. In the construction of conventional 
ML, non-deep learning modeling variables needed to 
be manually encoded, which may introduce a higher 
bias risk, especially in the context of case–control 
studies. The impact of other image-based deep learn-
ing on case–control studies was relatively minimal. 
Consequently, there is a heightened risk of bias in the 
selection of cases. Various ML methods in the primary 
studies employed their respective evaluation criteria for 
the interpretation of the gold standard. This variability 
in evaluation criteria may introduce bias. However, the 
impact is considered low when implementing or inter-
preting the index tests, and we believe there is no high 
bias risk (Tables  2 and 3). Detailed assessment results 
are illustrated in Fig. 2.

Meta‑analysis
IPF
ML model In the diagnosis of IPF, the combined 
C-index, sensitivity, and specificity of ML were 0.93 (95% 
CI 0.89–0.97), 0.79 (95% CI 0.73–0.83), and 0.84 (95% 
CI 0.79–0.88), respectively. Notably, the model with the 
highest diagnostic performance was the deep learning 
model (CT) proposed by Wenxi Yu [21], with a C-index of 
0.99 (95% CI 0.97–1), as illustrated in Figs. 3 and 4.

Table 2 Quality evaluation of the trials

Risk of bias assessment Case selection: Does the selection of cases produce 
bias?

Que1 Were consecutive or random cases included?

Que2 Was the case–control study design avoided?

Que3 Did the study avoid inappropriate exclusions?

The trial to be evaluated: Is there any bias in the con-
duct or interpretation of the trial to be evaluated?

Que1 Was the interpretation of the results of the trial 
to be evaluated done without knowing the results 
of the gold standard trial?

Que2 If a threshold was used, was it predetermined?

Will there be bias in the implementation and inter-
pretation of the gold standard?

Que1 Can the gold standard correctly distinguish 
between target disease states?

Que2 Was blinding used in the interpretation of the gold 
standard results?

Is there any bias in the flow of the cases? Que1 Was there an appropriate time interval 
between the trial to be evaluated and the gold 
standard?

Que2 Did all patients receive the same gold standard?

Que3 Were all cases included in the analysis?

Evaluation of clinical practicability que1 Matching of relevant included patients and back-
ground with evaluation questions

que2 Evaluation of the matching between the implemen-
tation and interpretation of the trial to be evaluated 
and the evaluation questions

que3 Applicability evaluation of gold standard
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Fig. 3 Forest Map of Meta-Analysis of C-index for ML in Diagnosis of IPF

Fig. 4 Forest Map of Meta-analysis of the Sensitivity and Specificity of ML in Diagnosis of IPF



Page 11 of 16Cong et al. European Journal of Medical Research          (2025) 30:288  

Radiologists/clinicians Among the six included pieces 
of literature on IPF [18–22], three of them [20–22] com-
pared ML with human experts. In these studies, the sensi-
tivity of radiologists/clinicians in the diagnosis of IPF was 
notably lower compared to that of ML. However, it was 
essential to note that due to the small sample size, only 
observational analyses were performed. In these three 
pieces of literature, the sensitivity of radiologists/clini-
cians diagnosing without the assistance of ML models 
ranged from 57 to 85%, while the specificity ranged from 
75 to 98% (Fig. 5).

UIP
ML model In the diagnosis of UIP, the combined 
C-index, sensitivity, and specificity of ML were 0.91 (95% 
CI 0.87–0.94), 0.92 (95% CI 0.80–0.97) and 0.92 (95% CI 
0.82–0.97), respectively. Notably, Aya Fukushima’s deep 
learning model exhibits the highest diagnostic perfor-
mance, boasting a C-index of 0.99 (95% CI 0.97 ~ 1.02), as 
illustrated in Figs. 6 and 7A.

We utilized funnel plot analysis to investigate publica-
tion bias concerning machine learning diagnoses of UIP, 
and the findings from the funnel plot along with Egger’s 

test reveal a significant publication bias within each vali-
dation set of the models (P < 0.05), as illustrated in Fig. 8.

Radiologists/clinicians Ten pieces of literature did not 
explore the joint use of doctors and ML models in the 
diagnosis of UIP. The diagnostic sensitivity of radiologists/
clinicians based solely on HRCT was reported to be 0.69 
(95% CI 0.50 ~ 0.84), which was comparable to the diag-
nostic sensitivity of ML models, as depicted in Fig. 7B.

Discussion
Summary of the main findings
We have observed that the primary source of IPF for ML 
remains HRCT, with only a limited number of studies 
utilizing chest X-rays. In this study, specifically, only one 
study employed chest X-rays as a variable [21], making 
direct comparisons with CT challenging. The ML meth-
ods employed include convolutional neural networks, 
deep learning, and random forest. In the diagnosis of 
IPF, ML demonstrates superior sensitivity and specific-
ity compared to clinicians/radiologists. For the diagnosis 
of UIP, whether examining the UIP pattern on HRCT or 
the pathological UIP pattern, variables are consistently 
derived from HRCT. The primary ML methods include 

Fig. 5 Sensitivity and Specificity of Human Expert Diagnosis of IPF
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convolutional neural networks, and deep learning, with 
a smaller representation of extreme gradient boost-
ing (XGboost). In UIP diagnosis, the diagnostic sen-
sitivity and specificity of ML align closely with those of 
clinicians/radiologists.

Comparison with previous studies
IPF needs to be distinguished not only from various 
interstitial lung disease (ILD) but also from specific 
types of IIP. Existing research indicates that IPF com-
prises 47–71% of IIP cases, whereas non-specific Inter-
stitial Pneumonia (NSIP) accounts for 13–30% of IIP 
cases [34, 35]. The subjects in five included studies are 
patients with ILD or diffuse lung lesions. The primary 
outcome indicators focus on the sensitivity, specificity, 
and diagnostic performance of ML in the detection of 
IPF among various ILDs. Among these studies, three 
[20–22] compared ML with human experts, reveal-
ing significantly lower diagnostic sensitivity of human 
experts compared to ML (Fig. 7B). The study by Raghu 
[12] found that, despite all 95 cases being confirmed as 
IPF by surgical lung biopsy, interstitial disease experts’ 
sensitivity in diagnosing IPF based on CT features was 
78.5%. Another study [36, 37] reported low sensitivity 

of human experts in the diagnosis of interstitial pneu-
monia or interstitial pulmonary fibrosis combined with 
emphysema. Therefore, HRCT-based deep learning 
is deemed meaningful for diagnosing IPF. Its pooled 
diagnostic sensitivity is higher than that of clinical/
radiological experts, potentially reducing interobserver 
variability and shortening the time from suspicion to 
diagnosis. It proves advantageous in the detection of 
IPF among various ILDs.

Regarding the diagnosis of UIP, the IPF Guidelines 
published in 2011 emphasized the role of identifying 
HRCT manifestations, including UIP patterns, as one 
of the independent diagnostic criteria. Studies compar-
ing pathology with HRCT confirmed the accuracy of 
HRCT diagnosis of classic UIP at 80–90%. However, in 
some early UIP diagnosis studies, the diagnostic speci-
ficity was relatively low, at 43–78%. This decrease in 
specificity is related to patients with no honeycombing 
or atypical features on CT, limiting radiologists’ ability 
to diagnose UIP based solely on CT. Among the studies 
included in this analysis, the pooled sensitivity of ML 
for diagnosing UIP is 92% (95% CI 0.80 ~ 0.97), with a 
specificity of 92% (95% CI 0.82 ~ 0.97). The sensitivity 
and diagnostic performance of ML in distinguishing 
UIP from non-UIP are comparable to those of human 

Fig. 6 Forest Map of Meta-Analysis of C-index for Machine Learning in Diagnosis of UIP
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Fig. 7 Forest Map of Meta-Analysis of Sensitivity and Specificity for Machine Learning in Diagnosis of UIP. (A Meta-Analysis of the Sensitivity 
and Specificity of Machine Learning in Diagnosis of UIP. B Sensitivity and Specificity of Human Expert Diagnosis of UIP)
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experts. In the future, ML algorithms may have an 
advantage in diagnosing potential UIP and non-UIP 
patterns.

Types of ML
Common ML models are applicable to interpretable 
clinical features, and some researchers have conducted 
ML studies based on imageological data. However, in the 
implementation process, manual image region segmen-
tation and texture feature extraction are required, which 
may introduce bias due to the influence of the observer’s 
prior knowledge. Deep learning is primarily applied to 
the identification of medical images, diagnosis, and prog-
nosis of diseases, demonstrating a higher diagnostic rate. 
In our study, we included studies on both ML and deep 
learning. Due to the limited number of included studies, 
we did not conduct separate meta-analyses for ML and 
deep learning, but only briefly reviewed them. Therefore, 
more studies are desired to explore whether ML meth-
ods constructed based on conventional interpretable 
clinical features and images will outperform deep learn-
ing. Another advantage of deep learning is its capacity to 
intelligently diagnose diseases, providing crucial insights 
for the development of intelligent tools.

Advantages and limitations of the study
The strength of our study lies in being the first systematic 
review of the diagnostic value of ML in IPF and UIP, pro-
viding a comprehensive summary of diagnostic results 
compared with clinical/radiological findings. However, 
certain limitations should be acknowledged. Firstly, 
although a comprehensive systematic search was con-
ducted, the number of studies included remains relatively 

low, which calls for careful interpretation of the findings. 
Secondly, the sensitivity analysis indicated that the pre-
dictive performance was not significantly influenced by 
chest radiography, which was one of the variables along-
side others from high-resolution CT. Thirdly, during the 
image acquisition process, the image parameters were 
not modified, and preliminary experiments were carried 
out with varying image parameters. Consequently, it was 
not feasible to eliminate the heterogeneity resulting from 
the transitional setup of the equipment. Lastly, high het-
erogeneity presents a considerable challenge in machine 
learning-based meta-analysis. Given the restricted num-
ber of included studies, we were unable to further investi-
gate this concern.

Conclusions
This study systematically evaluated the diagnos-
tic performance of machine learning (ML) based on 
high-resolution CT imaging for idiopathic pulmonary 
fibrosis (IPF) and usual interstitial pneumonia (UIP). 
The results demonstrate that ML models leverage 
their strengths in data processing and pattern recog-
nition to achieve rapid and efficient disease classifica-
tion with high sensitivity and specificity. This highlights 
the potential of AI-based imaging diagnostic tools in 
enhancing early disease screening efficiency and reduc-
ing human error.

From a clinical standpoint, machine learning mod-
els can proficiently tackle the observer variability that is 
inherent in conventional diagnostic methods. Specifi-
cally, they can improve both consistency and accuracy in 
multidisciplinary collaborative diagnoses. Furthermore, 
this study conducts a systematic comparison between 
machine learning and traditional clinical radiologi-
cal diagnostic approaches, validating the capability of 
machine learning to enhance diagnostic efficiency for IPF 
and UIP. This could serve as a foundation for its incor-
poration into future clinical practice. Given these find-
ings, prospective clinical applications might include the 
integration of machine learning algorithms into hospital 
imaging analysis systems, facilitating expedited and more 
precise early screening for pulmonary fibrosis, minimiz-
ing diagnostic cycles, and ultimately enhancing patient 
outcomes.

Nevertheless, the utilization of these technologies 
necessitates additional extensive models and multi-
center clinical trials to further confirm their applicabil-
ity and effectiveness in diverse clinical environments. 
Consequently, although the existing findings under-
score the considerable promise of machine learning, its 
broad implementation in clinical practice still demands 
thoughtful advancement.

Fig. 8 Funnel plot of Meta-Analysis of C-index for Machine Learning 
in Diagnosis of UIP
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