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Are the same parameters measured 
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predictive values for complication and mortality 
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Abstract 

Introduction  Numerous studies have investigated variables that predict mortality and complications follow‑
ing severe trauma. These studies, however, mainly focus on admission values or a single variable. The aim of this study 
was to investigate the predictive quality of multiple routine clinical measurements (at admission and in the ICU).

Methods  Retrospective cohort study of severely injured patients treated at one Level 1 academic trauma centre. 
Inclusion criteria: severe injury (ISS ≥ 16 points), primary admission and complete data set. Exclusion criteria end-of-
life treatment based on advanced directive, secondary transferred patients. Primary outcome: mortality, pneumonia, 
sepsis. Routine clinical parameters were stratified based on measurement timepoint into Group TB (Trauma Bay, 
admission) and into Group intensive care unit (ICU, 72 h after admission). Prediction of complications and mortality 
were calculated using two prediction methods: adaptive boosting (AdaBoost, artificial intelligence, AI) and LASSO 
regression analysis.

Results  Inclusion of 3668 cases. Overall mean age 45.5 ± 20 years, mean ISS 28.2 ± 15.1 points, incidence pneumonia 
19.0%, sepsis 14.9%, death from haemorrhagic shock 4.1%, death from multiple organ failure 1.9%, overall mortality 
rate 26.8%. Highest predictive value for complications for Group TB include abbreviated injury scale (AIS), new injury 
severity score (NISS) and systemic Inflammatory Response Syndrome (SIRS) score. Highest predictive quality for com‑
plications for Group ICU include late lactate values, haematocrit, leukocytes, and CRP. Sensitivity and specificity of late 
prediction models using a 25% cutoff were 73.61% and 76.24%, respectively.

Conclusions  The predictive quality of routine clinical measurements strongly depends on the timepoint of the meas‑
urement. Upon admission, the injury severity and affected anatomical regions are more predictive, while during the 
ICU stay, laboratory parameters are better predictor of adverse outcomes. Therefore, the dynamics of pathophysio‑
logic responses should be taken into consideration, especially during decision making of secondary definitive surgical 
interventions.
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Introduction
Severe traumatic injuries remain a significant pub-
lic health concern globally, contributing to substantial 
morbidity and mortality rates [1]. In the acute phase 
following trauma, patients are at a heightened risk of 
developing complications that can significantly influ-
ence their clinical outcomes [2, 3]. Identifying early 
predictors of adverse events, such as mortality, sepsis, 
pneumonia, haemorrhage or thrombosis, is paramount 
in trauma research, as it enables clinicians to initiate 
timely interventions and optimise patient manage-
ment strategies [4, 5]. We will be focusing on mortality, 
sepsis and pneumonia. These adverse events are com-
mon for multiple reasons. Pneumonia is often ventila-
tor associated, due to a lack of movement of the patient 
or hospital associated [6]. Sepsis is common in trauma 
patients due to dysregulated immune reaction to the 
initial trauma and surgical interventions [7]. Reducing 
these adverse effects can in turn reduce mortality.

While numerous studies have investigated the predic-
tive value of admission variables (haemoglobin, haema-
tocrit, prothrombin, lactate, ISS, NISS, APACHE) for 
adverse outcomes in trauma patients, there is a scar-
city of research focusing on the dynamic changes in 
pathophysiological parameters over time [8, 9]. The 
initial assessment of trauma patients in the emergency 
department (ED) or trauma bay is crucial for initiating 
resuscitative measures and identifying life-threatening 
injuries [5]. However, the predictive nature of variables 
measured at admission may differ from those assessed 
during the subsequent clinical course. In the literature, 
lactate clearance and CRP dynamics have been analysed 
for their predictive nature after the admission [10, 11]. 
However, those studies have mostly just focussed on a 
single parameter and the direct comparison of multiple 
parameters at two different timepoints such as admis-
sion vs. 72 h is scarce in the literature.

Therefore, the goal of this study was to investigate the 
predictive ability of routine clinical parameters, such as 
clinical, hemodynamic and laboratory values that were 
taken at admission and to compare their prediction for 
mortality and complications with the same parameters 
measured during the ICU stay at 72 h after admission. 
With that, we hope to improve the predictive nature of 
these values in the hours after admission, allowing us 
to better predict mortality and sepsis as an outcome, in 
return allowing us to improve our treatment.

In other words, should a surgeon pay special attention 
to the same or different parameters during ICU rounds 
compared to the initial assessment in the trauma bay? 
Shifting the focus from early damage control, being the 
focus in the trauma bay to treatment and timing accord-
ing to the physiological and dynamic changes.

We hypothesise that the parameters at admission and 
in the ICU are comparable in predicting mortality and 
complications severely injured patients.

Methods
The institutional ethics committee (BASEC 2020-00703) 
approved the study protocol of this retrospective cohort 
study. Reporting of data strictly follows the Strengthen-
ing the Reporting of Observational Studies in Epidemiol-
ogy (STROBE) Statement. The study was approved upon 
establishment of the database.

Data registry and variables
The polytrauma data registry includes severely injured 
patients that were treated at one academic trauma cen-
tre between 2008 and 2018. The data registry served as 
the local registry for severely injured patients with an 
ISS of 16 or above and includes collected medical data. 
The cutoff of an ISS of 16 or above was selected, as this 
is a widely recognised definition of a polytraumatised 
patient [12]. Data in the registry includes measurements 
of injury severity, injury distribution, and repetitive 
measurements of pathophysiologic measurements over 
time. Injury severity and injury distribution were quan-
tified utilising the abbreviated injury scale (AIS) which 
differentiates different anatomical areas and classifies the 
respective injury severity from 1 (minor) to 6 (deadly) 
[13]. Further measurements of interest included demo-
graphic variables.

Pathophysiologic measurements included variables 
of haemorrhage, coagulation, temperature, and soft tis-
sue damage. Soft tissue damage includes the presence of 
intracranial haemorrhage, the presence of lung contu-
sion, abdominal injuries or the type of fracture.

The data war automatically extracted from the patient 
records documented in our in-hospital clinical informa-
tion system.

Participants
This study was conducted on severely injured trauma 
patients who were treated at one Level 1 academic 
trauma centre. Inclusion criteria were severely injured 

Level of evidence: III (retrospective cohort study).

Keywords  Polytrauma, Prediction, Complications, Artificial intelligence



Page 3 of 11Gröbli et al. European Journal of Medical Research          (2025) 30:228 	

patients, which are commonly defined as having an ISS of 
16 points or higher [14]. Further inclusion criteria were 
a complete or near complete data set that allows analy-
sis and statistical testing for our outcome data points. 
Secondary transferred patients, patients with end-of-life 
management based on their advanced directive, as well 
as patients who died before arrival in the trauma bay 
were excluded from this study. Variables were excluded a 
priori if they had ≥ 60% missing values to ensure reliabil-
ity. For the early timepoint (TB) all available values were 
included in the model without automated imputation; all 
missing values were excluded. However, for the statistical 
analysis of the ICU parameters, automated imputation 
was used, since more datapoints were available over time 
to allow for a more accurate estimation of the missing 
values.

Outcomes and definition
The primary outcomes of this study were mortality and 
complications. Complications of interest include the 
development of pneumonia or the development of sepsis, 
of which the definition has changed over time and, there-
fore, refers to the current definition at the time of docu-
mentation (Sepsis-2 and Sepsis-3 definition) [15, 16]. 
The presence of these adverse events was based on the 
documentation in the data registry, which was extracted 
from the patient’s diagnosis list in our clinical informa-
tion system.

The outcome variables were analysed based on the data 
measurements at admission in the trauma bay (Group 
TB) and in the ICU 72  h after admission (Group ICU), 
which led to six categories (death, sepsis, and pneumo-
nia for both admission and 72-h cases). Even though the 
term “Group” might suggest two different populations, 
this stratification only relies on the timepoint of meas-
urement of the exact same cohort. The outcomes/compli-
cations were not bound to the 72 h, but whether or not 
they occurred during the hospital stay of the respective 
patient. Early death was defined as death within the first 
72 h after trauma.

Statistics
Continuous variables are displayed as mean with stand-
ard deviation (SD) or median and interquartile range 
(IQR) as appropriate, categorical variables witch count 
(n) and percentage. Group comparison was performed 
with paired sample t test. For complete prediction analy-
sis, two different prediction models were utilised: an AI 
model (AdaBoost) and Least Absolute Shrinkage and 
Selection Operator (LASSO) [17, 18]:

A baseline model prioritising maximum accuracy was 
built using adaptive boosting via the AdaBoost package 
in R [19]. This artificial intelligence is a machine learning 

ensemble method that combines multiple weak learners 
(decision trees) to create a strong learner. After estab-
lishing baseline accuracy, less complex yet interpret-
able models were pursued. Least Absolute Shrinkage 
and Selection Operator (LASSO) logistic regression was 
chosen for its variable selection capabilities, with Group 
LASSO used in certain cases to ensure all levels of cat-
egorical variables were included or excluded together. 
However, the artificial intelligence itself does not provide 
information regarding the variables that were utilised. 
Hence why LASSO regression was used to determine 
the best possible variables. To ensure the reproducibility 
of the findings, the AdaBoost algorithm was optimised 
through the use of grid search with cross-validation. 
This process involved the tuning of several key param-
eters, including the number of trees, the learning rate, 
the tree depth, and the minimum samples per leaf. The 
selection of these values was conducted with the objec-
tive of achieving a balanced accuracy and generalization. 
For LASSO regression, cross-validation was utilised to 
ascertain the optimal regularization strength (lambda), 
thereby ensuring an optimal trade-off between model 
complexity and performance. The performance of both 
models was evaluated using ROC curves, sensitivity, and 
specificity, with fixed random seeds and clearly defined 
validation methods to ensure consistency.

Considerations during model construction included 
assessing accuracy against the no-information rate, 
prioritising sensitivity and specificity, and adjusting 
probability cutoff points to mitigate false negatives. Prob-
ability cutoff point: logistic regression outputs prob-
abilities categorized using a cutoff of 0.25 to enhance 
sensitivity in identifying critical outcomes. Yet, depend-
ing on the data a different cutoff point was determined 
by the model automatically, as it adapts to the data. This 
allows for the model to be refined and adapt to the data 
allowing the model not to be simplified to much for the 
data analysed, furthermore, preventing overfitting of the 
model. However, if too many variables are included the 
model may result in underfitting. Therefore, a selection 
of the most sensitive and specific data is essential. To 
optimise sensitivity and ensure that high-risk patients 
were not overlooked, probability cutoffs (e.g., 0.1 and 
0.25) were adjusted based on ROC curve analysis, with a 
focus on prioritising sensitivity over specificity in medi-
cal predictions. Lower cutoffs enabled the capture of 
more critical cases; while accepting a higher false posi-
tive rate, a strategy deemed preferable in clinical set-
tings, where the failure to identify a high-risk patient 
could have severe consequences. To prevent overfit-
ting, cross-validation (fivefold for AdaBoost, tenfold for 
LASSO) was employed, along with regularization and 
tree depth limits, ensuring the generalisation capability 
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of the models and preventing overfitting to the training 
data. The employment of these methodologies ensured a 
harmonious equilibrium between the predictive accuracy 
and the clinical relevance of the models, thereby miti-
gating the risk of overly optimistic performance on the 
training data set.

A validation of analysis was performed utilizing 20% 
of the data set. This is the standard approach to perform 
internal validation testing (80% used for training and 20% 
used for validation). The separation of the data occurs 
randomly, to prevent data sets which are too representa-
tive. Training a model with more data allows the model 
to avoid overfitting; however, the model still needs to be 
able to be checked for accuracy with data that has not 
been used for training. One of the benefits is that an over-
fitting of the model can be controlled to a certain extent. 
The complete analysis was performed utilizing R (R Core 
Team (2023). R: A Language and Environment for Statis-
tical Computing_. R Foundation for Statistical Comput-
ing, Vienna, Austria. https://​www.R-​proje​ct.​org/).

Results
From initially 1063 individual variables in the data frame, 
243 variables were removed due to (near) emptiness or 
limited trustworthiness. This resulted into 820 individual 
variables for the respective timepoints being analysed for 
included 3668 patients.

Demography
This study included 3668 patients, the mean age was 
45.8  years (SD ± 20.2  years), while the mean Glasgow 
Coma Scale (GCS) score was 8.8 (SD ± 5.5). Majority of 
the patients were male (n = 2694, 73.4%). The popula-
tion tended to be slightly overweight with a BMI of 25 
(SD ± 4.38). The median Injury Severity Score (ISS) was 
25 (IQR 17–34), and the median (NISS) was 34 (IQR 
25–50). The anatomic-specific injury severity is dis-
played in Table 1. AIS Head was the highest with a mean 
of 2.8 (SD ± 2.0), followed by AIS Thorax with a mean 
of 1.6 (SD ± 1.7) and AIS Extremity with a mean of 1.4 
(SD ± 1.4).

Physiologic parameters
Almost all physiologic parameters at Group TB were 
significantly different from Group ICU also respective 
to the large sample size. The C-reactive protein (CRP) 
in Group TB was significantly lower at 13.72(± 41.14) 
compared to 131.31 (± 73.22) (p < 0.001). The pH-
value did not show significant differences due to the 
high standard deviations (Group TB = 7.31 ± 0.13 vs. 
Group ICU = 13.10 ± 203.91, p = 0.301). Base excess 
was significantly lower in Group TB (−3.77 ± 5.26) 

compared to Group ICU (1.42 ± 2.75) (p < 0.001). Lac-
tate values in the trauma bay were significantly higher 
(TB = 2.94 ± 2.53) compared to measurements at the 
ICU (1.18 ± 1.02) (p < 0.001). Further parameters that 
were significantly higher at admission (p < 0.001) 
were Haematocrit, Haemoglobin, heart rate and 
mean arterial pressure (MAP). The Quick was signifi-
cantly higher in the group ICU (TB = 78.80 (28.52) vs. 
ICU = 91.74 (27.78) (< 0.001). Thrombocyte count did 
not yield significant differences (TB = 299.50 ± 4953 
vs. ICU = 152.13 ± 69.99) (p = 0.101) as well as the 
systolic blood pressure (TBO = 130.75 ± 27.55 vs. 
ICU = 127.85 ± 54.21) (p = 0.260, Table 2).

Table 1  Demographic variables of study population;

AIS Abbreviated Injury Scale, BMI Body Mass Index, ISS Injury Severity Score, NISS 
New Injury Severity Score, Std. standard deviation, IQR interquartile range

Parameter (N = 3668) Mean Standard 
deviation 
(SD)

Age (years) 45.8 20.2

Male (n, %) 2694 (73.4%)

BMI 25.00 4.38

Glasgow coma scale (GCS) 8.8 5.5

Injury severity/pattern

 AIS Head 2.8 2.0

 AIS Face 0.6 1.0

 AIS Thorax 1.6 1.7

 AIS Spine 0.8 1.4

 AIS Extremity 1.4 1.4

 AIS Pelvis 0.6 1.2

 AIS Skin 0.5 0.8

 ISS (median, IQR) 25 17–34

 NISS (median, IQR) 34 25–50

Table 2  Physiologic parameter at time of admission to the 
trauma bay vs. at 72 h at the ICU;

CRP C-reactive protein, pH pondus hydrogenii

Parameter (mean ± SD) Group TB Group ICU p value

CRP 13.72 (41.14) 131.31 (73.22)  < 0.001

pH 7.31 (0.13) 13.10 (203.91) 0.301

Base excess − 3.77 (5.26) 1.42 (2.75)  < 0.001

Lactate 2.94 (2.53) 1.18 (1.02)  < 0.001

Haematocrit 33.68 (8.28) 28.55 (5.34)  < 0.001

Haemoglobin 11.44 (4.03) 9.94 (5.39)  < 0.001

Thrombocyte count 299.50 (4953.40) 152.13 (69.99) 0.101

Quick 78.80 (28.52) 91.74 (27.78)  < 0.001

Heart rate 90.17 (22.09) 84.24 (24.13)  < 0.001

Systolic blood pressure 130.75 (27.55) 127.85 (54.21) 0.260

Mean arterial pressure 93.12 (25.70) 86.43 (13.70)  < 0.001

https://www.R-project.org/
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Outcome parameters
Patients stayed in the hospital for an average of 17.0 
(SD ± 18.7 days), and in the intensive care unit (ICU) for 
8.2 days on average (SD ± 10.5 days). The mean duration 
of ventilator support was 5.1 days (SD ± 8.1 days). Com-
plications were observed in 24.7% of patients, with pneu-
monia affecting 19.0% and sepsis occurring in 14.9% of 
cases. In addition, incidences of septic shock, and mor-
tality were noted at rates of 3.2% and 26.8%, respectively 
(Table 3).

Prediction of mortality
Group TB
Adaptive Boosting (AdaBoost) achieved an overall accu-
racy score of 88.28%, surpassing the no-information 
rate of 72.01%. A probability cutoff of 0.1 was utilised to 
obtain these results. In addition, a Receiver Operating 
Characteristic (ROC) curve and a table comparing actual 
vs. predicted values were generated, based on validation 
using 20% of the data set. Notably, the model exhibited 
a sensitivity of 84.88% and a specificity of 89.60%. The 
prediction of early mortality based on the adaptive boost-
ing provided an odds ratio (OR) of 48.37 (95% CI 30.13–
77.64, p < 0.001).

Using Group LASSO for predicting death based on 
the admission variables provided an OR of 25.75 (95% 
CI 14.07–47.13, p < 0.001). These models yielded to the 
inclusion of following primary parameters: AIS head, AIS 
face and AIS of extremity injuries as the most relevant 
parameters (Table 4).

Group ICU
The 72-h data set to predict death, AdaBoost exhibited 
an accuracy of 89.40%, which closely aligns with the no-
information rate of 89.75%. This model provided an OR 

of 6.19 (95% CI 1.69–22.64, p = 0.013). The confusion 
matrix was generated using a 25% cutoff, resulting in a 
sensitivity of 6.90% and a specificity of 98.82%.

The LASSO logistic regression model outperformed 
AdaBoost, achieving an accuracy of 89.97% compared to 
the no-information rate of 89.69%. Moreover, the sensi-
tivity of this model using a 25% cutoff clearly surpassed 
that of AdaBoost (43.24% vs. 6.90%). The LASSO logistic 
regression yielded an OR of 15.59 (95% OR 6.79 to 35.82, 
p < 0.001) (Fig.  1). Most predictive parameters for mor-
tality in Group ICU were Haematocrit, Leucocyte count 
and lactate (Table 5).

Prediction of pneumonia
Group TB
The overall accuracy achieved with ADA Boost was 
81.1% using a cutoff at 0.25. However, the accuracy of 
the no-information rate slightly surpassed this at 81.7%. 
Due to missing values within our data set, a random for-
est approach was not feasible. The yielded variables form 
the AdaBoost analysis resulted in an OR of 30.08 (95% CI 
3.65–247.81, p = 0.0001) in the LASSO regression analy-
sis. The AdaBoost analysis yielded the following impor-
tant primary variables for the prediction of pneumonia 
based on admission values: AIS thorax, AIS abdomen, 
AIS integument and RTS (Table 4).

Group ICU
The accuracy of AdaBoost model for predicting pneu-
monia after 72  h is 77.20% vs. a no-information rate of 
75.80%. The sensitivity and specificity for this model 
were calculated using a cutoff of 25% and are 48.76% and 
86.28%, respectively. The AdaBoost prediction model 
yielded an OR of 5.98 (95% CI 3.77–9.49, p < 0.001).

The Group LASSO model for predicting pneumonia 
after 72-h outperforms the AdaBoost model, although 
there is a slight decrease in accuracy, the sensitivity is 

Table 3  Outcome parameter,

ICU Intensive Care Unit

Parameter Mean Standard 
deviation 
(SD)

Length of hospital stay (days) 17.0 18.7

Length of intensive care stay (ICU, days) 8.2 10.5

Duration of ventilator support (days) 5.1 8.1

%

All complications (%) 24.7

 Pneumonia 19.0

 Sepsis 14.9

 Bacteraemia 7.9

 Septic Shock 3.2

 Mortality 26.8

Table 4  Trauma bay parameters (TB) that improve prediction of 
mortality, pneumonia, or sepsis

Parameter Mortality Pneumonia Sepsis

AIS Head X X

AIS Face X X

AIS Extremities X

AIS Thorax X X

AIS Abdomen X

AIS Pelvis X X

AIS Soft tissue X X

NISS X

RTS X

SIRS-Score X
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almost twice as high using the 25% cutoff. The accuracy 
for Group LASSO is 70.42% (vs. 73.63% no-information 
rate), and the sensitivity and specificity are 86.59% and 
64.63%, respectively. Group LASSO prediction model 
yielded an OR of 11.79 (95% CI 5.91–23.52, p < 0.001). 
Relevant primary variables included lactate, base excess 
and CRP (Fig. 2) (Table 5).

The prediction of pneumonia showed to be more pre-
cise when the ICU variables were utilised rather than 
the trauma bay admission variables. (OR of 11.79 (95% 
CI 5.91–23.52, p < 0.001) vs. OR of 30.08 (95% CI 3.65–
247.81, p = 0.0001) in the TB), Fig. 2.

Prediction of sepsis
Group TB
The ADA Boost method has an accuracy of 84.9% at a 
cutoff of 0.5. The no-information rate is slightly bet-
ter in the sepsis prediction with an accuracy of 85.5%. 

This means that it is very hard to predict sepsis bet-
ter than just predict that all patients have no sepsis in 
hospital. This is since sepsis is a rare event in the data 
set. The Group LASSO with only columns with less 
than 60% missing values achieves an accuracy of only 
81.1% with a cutoff at 0.3. The no-information rate for 
this test set was only 79.6%. The Group LASSO for the 
2-h sepsis model with the important variables from 
the ADA Boosting performs better with an accuracy of 
81.9% at a cutoff of 0.25. It yielded an OR of 7.6 (95% 
CI 2.79–20.67, p = 0.0001). The utilised primary vari-
ables at admission which predicted sepsis included AIS 
thorax, AIS pelvis, AIS integument, age, body mass 
index (BMI) and leukocytes, haematocrit, CRP and pH 
(Table 4).

Group ICU
The AdaBoost accuracy predicting sepsis after 72  h at 
the 50% cutoff is 81.77% vs. a no-information rate of 
80.00%. The sensitivity is rather low at 25.66%, while the 
specificity is 95.80%. It yielded an OR of 7.87 (95% CI 
4.22–14.68, p < 0.001). Group LASSO model for predict-
ing sepsis after 72-h outperforms the AdaBoost model 
in terms of sensitivity, while the accuracy is lower at 
75.71% (vs. non-information rate of 79.66%). The sensi-
tivity and specificity of this model using a 25% cutoff are 
73.61% and 76.24%, respectively. Group LASSO yielded 
an OR of 8.95 (95% CI 4.95–16.17, p < 0.001) (Fig. 3). The 

Fig. 1  Prediction of mortality is higher when variables at the trauma bay are utilised when compared with the same variables at the ICU

Table 5  ICU parameters (72 h) that improve prediction of 
mortality, pneumonia, or sepsis

Parameter Mortality Pneumonia Sepsis

Haematocrit X X

Leucocyte count X X

Lactate X X X

Base-excess X X

CRP X X
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most predictive parameters were haematocrit, leucocyte 
count, lactate, base-excess and CRP (Table 5).

The prediction of sepsis showed to be more precise 
when the ICU variables were utilised rather than the 
trauma bay admission variables. (ICU OR of 8.95 (95% 

Fig. 2  Prediction of pneumonia is more precise when variables on the ICU are utilised when compared to the admission variables in the trauma 
bay

Fig. 3  Prediction of sepsis is improved when the prediction model includes variables available on the ICU when compared to trauma bay 
admission values
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CI 4.95–16.17, p < 0.001) vs. TB OR of 7.6 (95% CI 2.79–
20.67, p = 0.0001)) (Fig. 3).

Discussion
With this study, we were able to show that testing of 
certain variables such as pH, lactate, haemoglobin, base 
excess and GCS at different timepoints leads to a vary-
ing predictive capability. This means that certain values, 
such as the injury distribution and severity, have a better 
predictability at admission, while laboratory parameters 
have an improved predictive power during the ICU stay. 
Current literature on predictive parameters in trauma 
patients predominantly focuses on admission or single 
variables, overlooking the potential changes in patient 
status that occur during the clinical course [9]. This study 
addresses this gap by comparing the predictive qual-
ity of variables obtained at admission to the trauma bay 
with those measured 72  h after admission in the ICU. 
To include all possible variables, AdaBoost, an artificial 
intelligence machine was utilised to detect the best pos-
sible benchmark. To detect the best variables that were 
included in this machine-learning algorithm, LASSO 
regression analyses were utilised. We were able to show 
amongst other results that:

1)	 The predictive ability of clinical variables for mortal-
ity, pneumonia, or sepsis are strongly dependant on 
the time of observation and differ from admission 
compared to the ICU.

2)	 In the early assessment, measurements of injury 
severity and injury distribution showed the highest 
predictive ability for mortality.

3)	 At 72 h, inflammatory and hemodynamic parameters 
were more reliable predictors for mortality, pneu-
monia, and sepsis and outperformed overall injury 
severity.

It appears that the dynamic measurement of patho-
physiological parameters changes the predictive quality 
for mortality, pneumonia, or sepsis. The dynamic meas-
urements of variables reflects disease progression [20]. 
Trauma patients often experience rapid changes in their 
physiological status during the acute phase of injury [21]. 
Dynamic measurements allow clinicians to track the pro-
gression of pathophysiological processes over time, pro-
viding valuable insights into the evolving nature of the 
patient’s condition [22]. These measurements also reflect 
the treatment success during and after resuscitation [20, 
23].

Certain complications, such as sepsis or organ dys-
function, may develop or worsen over time following 
a traumatic injury [24, 25]. By continuously monitoring 
pathophysiological parameters, clinicians can detect early 

signs of complications and intervene promptly, poten-
tially preventing adverse outcomes [10]. Allowing the 
treatment to be guided accordingly, for example, delaying 
or prioritising certain surgical procedures and adjusting 
intensive care unit treatment to the current physiological 
condition of the patient.

This study demonstrates that early mortality is asso-
ciated with a high injury severity and injury distribu-
tion (i.e., traumatic brain injury), whereas for patients 
that survive the initial 72 h, the successful resuscitation 
reflected by the physiologic parameters is crucial.

Overall, the dynamic measurements of pathophysiolog-
ical parameters play a crucial role in trauma care by pro-
viding clinicians with timely, actionable information to 
guide clinical decision-making, enhancing and improving 
patient monitoring, and improving patient outcomes [5]. 
The choice of admission values aimed to detect risk fac-
tors for early mortality or complications. It appears that 
the same variables lose their predictive capability over 
time.

Our findings reveal further, distinct predictive patterns 
between the measurements upon admission and the 
measurements 72 h after admission during the ICU stay. 
Adaptive Boosting (AdaBoost) provided a strong initial 
benchmark, while LASSO regression analysis facilitated 
variable selection.

In the initial assessment, especially variables of trau-
matic brain injuries are most predictive for mortal-
ity. Traumatic brain injuries remain the most relevant 
predictor for early death [26]. The mortality rate from 
haemorrhage reduces constantly [3]. This might be due 
to improved diagnostics and treatment protocols. The 
findings from this study are consistent with previous 
research that emphasises the significance of injury sever-
ity measurements in predicting mortality and compli-
cations during the early stages of trauma management 
[27–29]. However, our results also highlight the impor-
tance of incorporating dynamic variables, such as inflam-
matory and hemodynamic markers, in predicting adverse 
outcomes at later timepoints [30]. This suggests that the 
predictive power of certain parameters may change over 
time, necessitating ongoing monitoring and reassessment 
to optimise patient care.

Furthermore, this study highlights the limitations 
of relying solely on admission variables for predicting 
adverse outcomes in trauma patients. While these vari-
ables provide valuable initial insights, they may not cap-
ture the full complexity of patient conditions as they 
evolve over time. By incorporating measurements taken 
at multiple timepoints, this study offers a more nuanced 
understanding of the factors influencing patient out-
comes and provides a foundation for the development of 
tailored monitoring and intervention strategies.
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Strengths and limitations
Artificial intelligence and machine learning algorithms 
improve big data analyses beyond the standard testing. 
One major limitation of standard regression analysis 
is the choice of included variables. These are based on 
the subjective choice of the clinician that observed the 
predictive relevance of certain variables or on explora-
tory testing. The analysis in this study included all pos-
sible variables that were included in our data registry to 
develop the benchmark for predicting complications. 
One limitation is the artificial intelligence itself does not 
provide information regarding the variables that were 
utilised. Therefore, LASSO regression analysis is required 
to detect the best possible variables. While the predictive 
capability of these methods is not identical, they provide 
comparable results.

Second, the artificial intelligence can only utilise vari-
ables that were included in the data registry. The regis-
try encompasses the timespan from 2008 to 2018 and 
is subject of the respective physician’s discretion or, i.e., 
scoring systems (interobserver reliability), changing defi-
nitions (i.e., sepsis) and evolving treatment strategies. As 
a results, a patient admitted in 2008 may not have been 
diagnosed and or treated the way they would have been 
if they had been treated in 2018 for multiple reasons. For 
one, the definition of, for example, sepsis has changed 
over the course of our study period. This leads to the fact, 
that the prediction model for sepsis in this study might be 
inferior compared to mortality and pneumonia, as these 
remained consistent over the entire timespan. However, 
due to the retrospective nature of this study, we were not 
able to determine, whether the patients diagnosed under 
the Sepsis-2 definition would also have been diagnosed 
under the Sepsis-3 definition. Therefore, the analysis per-
formed was the closest and most feasible approximation 
possible under the given circumstances. There might be 
other, lesser-known variables that were not documented 
or were excluded from the data set but might provide 
better prediction for certain adverse events.

Prediction models that have been trained on one retro-
spective data set alone may be over-fitted to this specific 
cohort, which most likely also is the case in this study. 
The predictive power may change in the future if new 
strategies and further parameters are incorporated in 
clinical practice. In addition, this kind of big data analy-
sis often results in significant observations concerning 
small differences that might not be clinically relevant. In 
addition, we only focused on polytraumatised patients 
(ISS ≥ 16) admitted to one Level 1 academic trauma cen-
tre, which might make our results not transferable to 
less severely injured patients or trauma patients in gen-
eral. Other institutions which are not a Level 1 academic 
trauma centre may have less severely injured patients, 

which—in return—can mean that our data may not be 
representable to their data set. Patients who required spe-
cific treatments or specialities are usually directly trans-
ferred to Level 1 trauma centres or are transferred after 
initial diagnosis in a regional/municipal hospital. As this 
study utilises a patient registry that encompasses a long 
collection period, certain definitions (i.e., sepsis) may 
have changed within the observed study period. There-
fore, the diagnosis always refers to the regarding defini-
tion of the current timeframe and unfortunately could 
not be standardised overall in a retrospective manner. To 
limit the restrictions of our (retrospective) single-centre 
experience, we performed an additional internal valida-
tion. An external validation and prospectively collected 
data would provide further insights concerning our 
results. If the study were performed in a multi-centre set-
ting there may also be differences regarding injury mech-
anism, treatment options and patient demographics. In 
other countries, the demography of the patient collective 
may considerably vary from that observed in Switzerland. 
It can be assumed that this could have an influence on 
the observed results. Furthermore, not every hospital in 
every region has the same access to treatment options as 
our hospital has, this can further influence the outcomes 
of patients and the complications and mortality observed. 
This extensive time of observation also explains the over-
all higher mortality/complication rates compared to data 
nowadays, as they have relevantly decreased over time.

Furthermore, this study relied on routinely collected 
measurements. Clinical scores and parameters were rou-
tinely assessed; however, differences in timing, frequency, 
and measurement techniques could influence data accu-
racy. There was also a potential for misclassification bias, 
such as diagnostic labels (e.g., sepsis and pneumonia), 
as these were based on physician-documented diagno-
sis rather than strict retrospective application of stand-
ardised criteria, which could lead to a variability in case 
identification. A physician may have an outdated und 
unclear definition of sepsis and pneumonia in mind when 
diagnosing a patient with said complication than another 
physician leading to a potential misclassification bias. 
Furthermore, a physician may document a complication, 
while a different physician may not.

Conclusion
The prediction of complications is both time sensitive 
and dependent on the specific complications in severely 
injured patients. Early mortality (Mortality within the 
first 72  h) is best predicted with variables of severity of 
brain injury. Late complications are best predicted with 
variables of inflammation, haemorrhage or soft tissue 
damage. Continued and dynamic reassessments can 
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help us improve the prediction of adverse events in the 
severely injured patient.
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