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Abstract 

Objective The incidence of thyroid cancer (TC) is increasing in China, largely due to overdiagnosis from widespread 
screening and improved ultrasound technology. Identifying precise TC biomarkers is crucial for accurate diagnosis 
and effective treatment.

Methods TC patient data were obtained from TCGA. DEGs were analyzed using DESeq2, and WGCNA identified gene 
modules associated with TC. Machine learning algorithms (XGBoost, LASSO, RF) identified key biomarkers, with ROC 
and AUC > 0.95 indicating strong diagnostic performance. Immune cell infiltration and biomarker correlation were 
analyzed using CIBERSORT.

Results Four key genes (P4HA2, TFF3, RPS6KA5, EYA1) were found as potential biomarkers. High P4HA2 expression 
was associated with suppressed anti-tumor immune responses and promoted disease progression. In vitro stud-
ies showed that P4HA2 upregulation increased TC cell growth and migration, while its suppression reduced these 
activities.

Conclusion Through bioinformatics and experimental validation, we identified P4HA2 as a key potential thyroid 
cancer biomarker. This finding provides new molecular targets for diagnosis and treatment. P4HA2 has the potential 
to be a diagnostic or therapeutic target, which could have significant implications for improving clinical outcomes 
in thyroid cancer patients.
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Introduction
Neoplasms remain the main killer worldwide [1–4]. 
According to recent statistics, in 2024, the global inci-
dence of thyroid cancer (TC) is ranked 7th among 185 
countries, marking a notable rise from 11th place in 2022 
[5, 6]. Furthermore, the incidence of thyroid cancer ranks 
third among all malignant tumors in China. Thyroid can-
cer is primarily categorized into three histological types: 
among these, differentiated thyroid cancer (DTC) is the 
most prevalent pathological type, constituting approxi-
mately 90% of malignant thyroid tumors, with females 
experiencing a substantially higher incidence than males 
[7].

In its early stages, TC typically presents with no 
overt symptoms; however, recent advancements in the 
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diagnosis and treatment of TC have facilitated ear-
lier detection. Thyroid nodules are generally identified 
through palpation and ultrasonography during routine 
thyroid cancer screenings of the general population, with 
30–40% of cases being detected via palpation [8–10]. 
Although the overall prognosis for TC is generally favora-
ble, the risk of tumor metastasis and recurrence remains 
substantial. Approximately 30% of patients with DTC 
experience recurrence and distant metastasis. Within 
this subgroup, about one-third progressively lose their 
sensitivity to radioiodine (RAI) therapy due to reduced 
uptake of radioiodine by cancer cells, ultimately devel-
oping into radioiodine-refractory differentiated thyroid 
cancer (RAIR-DTC) [7, 11, 12]. The 10-year survival 
probability for RAIR-DTC is a mere 10%, with a median 
survival duration spanning from 3 to 5 years. In addition, 
the disease-specific mortality rate for anaplastic thyroid 
cancer (ATC) is close to 100%, with a median survival 
of only 4 months after diagnosis. TC significantly affects 
both the physical and mental health of individuals and 
imposes considerable economic and social burdens on 
society. Consequently, there is an urgent need to identify 
reliable biomarkers to enhance the detection and treat-
ment of this disease.

In the medical domain, the utilization of machine 
learning technologies is garnering increasing scholarly 
attention. Machine learning can extract valuable insights 
from extensive medical datasets, thereby facilitating 
more precise diagnoses, treatment plans, and predictive 
models for clinicians and researchers [13]. In our study, 
we employed three machine learning algorithms: LASSO 
(least absolute shrinkage and selection operator), RF 
(Random Forest), and XGBoost (extreme gradient boost-
ing), to identify characteristic genes associated with thy-
roid cancer. LASSO regression is a linear model that is 
extensively used for feature selection and regression anal-
ysis in the medical field. It incorporates a penalty term 
λ, which reduces model complexity and enhances gen-
eralizability [14]. RF models, an ensemble learning tech-
nique, construct multiple decision trees for classification 
or regression purposes. XGBoost, an advanced gradient 
boosting algorithm, enhances predictive accuracy by 
integrating decision trees and is prevalently utilized in 
machine learning applications. In the medical context, 
Random Forest is extensively applied in areas such as dis-
ease risk assessment, survival analysis, and image recog-
nition [15].

In our study, we screened biomarkers for TC based 
on the TCGA-THCA database. We used three machine 
learning methods: LASSO, RF, and XGBoost. We further 
experimentally validated the functions of the screened 
biomarkers (Fig.  1). Our research offers innovative 
approaches for diagnosing thyroid cancer and identifies 

novel therapeutic targets for its treatment. Our study 
represents the first multi-omics integrated analysis to 
reveal the dual role of P4HA2 in thyroid cancer (pro-can-
cer and immunosuppressive), providing novel insights 
into its potential as a diagnostic and therapeutic target.

Materials and methods
Data acquisition
From the TCGA (https:// portal. gdc. cancer. gov/) [16–
18] and the Gene Expression Omnibus (GEO) [19–21] 
we retrieved and downloaded transcriptomic data for 
TC along with corresponding clinical information. In 
the THCA cohort derived from the TCGA database, 
this study encompassed a total of 572 samples, consist-
ing of 59 normal thyroid tissue samples and 513 thyroid 
cancer tissue samples. Furthermore, two GEO datasets 
based on the Affymetrix GPL570 platform were utilized: 
GSE29265, comprising 10 ATC samples, 59 TC samples, 
and 45 normal samples; and GSE33630, which includes 
60 TC samples and 45 normal samples [22, 23].

Differential expression genes screening
We identified DEGs between TC and normal tissues from 
the THCA cohort using the “DESeq2” package (version 
1.44.0) in R software (version 4.4.1), employing a thresh-
old of a false discovery rate (FDR) < 0.05 and an absolute 
log2 fold change (|log2 FC|) > 1, where log2 FC < − 1 were 
classified as down-regulated, and log2 FC > 1 were clas-
sified as up-regulated. Visualization of DEGs was con-
ducted through volcano plots and heat map generated 
with the "ggplot2" package (version 3.5.1).

WGCNA
In this study, we utilized the R package "WGCNA" to 
perform WGCNA. The TCGA dataset was divided into 
cancerous and adjacent normal tissue groups to iden-
tify modules most relevant to the dataset. We computed 
Pearson correlation coefficients between genes and deter-
mined a soft threshold of 6 to ensure that the gene net-
work conformed to a scale-free topology. This selection 
was based on the evaluation of the Scale-Free Topology 
Model Fit Index (signed  R2) and Mean Connectivity. Spe-
cifically, we chose the first soft threshold that surpassed 
an  R2 value of 0.8 for the scale-free topology model fit, 
while the corresponding Mean Connectivity approached 
zero, ensuring the sparsity and biological significance of 
the network [24]. A hierarchical clustering dendrogram 
was generated, with distinct branches representing dif-
ferent gene modules. Genes with similar expression 
patterns were grouped into modules, each containing 
a minimum of 30 genes. Subsequently, analogous mod-
ules were combined at a cut height threshold of 0.25. By 
overlapping the core genes within the core module with 

https://portal.gdc.cancer.gov/
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Fig. 1 Integrated genomic analysis revealing key genes and modules in thyroid cancer. A Volcano plot highlighting differentially expressed genes 
between thyroid cancer and normal tissues. B Sample clustering and outlier detection. C Selection of soft-thresholding power for WGCNA analysis. 
D Heatmap of module–trait relationships in WGCNA analysis. E Dynamic tree cut for WGCNA module identification. F Correlation of the red module 
with thyroid cancer traits. G Intersection of differentially expressed genes and genes within the most relevant WGCNA module
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previously identified DEGs, we identified 1359 genes as 
potential hub genes [25].

PPI network analysis
All 1359 genes were subsequently used as input for pro-
tein–protein interaction (PPI) network analysis. We uti-
lized STRINGdb (version:2.16.4), setting the protein 
interaction score threshold at 905 to ensure that only pro-
teins with significant interactions were included. To iden-
tify key hub genes, we employed the Maximum Clique 
Centrality (MCC) method, which focuses on the most 
densely connected subsets of nodes within the network. 
Utilizing the functionality of the STRING database, we 
created a protein–protein interaction network that visu-
ally illustrates the relationships between proteins. This 
analysis ultimately identified 291 key hub genes, which 
were characterized by their centrality within the network 
and their involvement in the most significant interac-
tions, as determined by the MCC approach.

Identification of optimal diagnostic gene biomarkers 
by machine learning
RF is a machine learning technique that builds an 
ensemble of decision trees to perform classifica-
tion or regression tasks, improving the model’s accu-
racy and robustness by aggregating predictions [26]. 
In our research, we utilized the “randomForest” R 
package(version:4.7–1.2) to develop the RF model. To 
determine the optimal number of trees (ntree), we con-
ducted a grid search over a range of values and selected 
151 based on minimizing the error rate across the entire 
dataset, which was further validated through a tenfold 
cross-validation process. We focused on genes with a fea-
ture importance score exceeding 25.

LASSO logistic regression is a data analysis method 
that employs L1 regularization to penalize regression 
coefficients, thereby simplifying the model, reduc-
ing multicollinearity, and preventing overfitting [27]. 
We implemented the LASSO logistic regression model 
using the “glmnet” R package (version:4.1–8) with ten-
fold cross-validation (nfolds = 10) to assess model sta-
bility and select the optimal regularization parameter λ 
("lambda.min"). Model performance was evaluated using 
a binomial distribution and default settings. By selecting 
the regularization parameter λ that minimized the crite-
ria, we extracted coefficients from the LASSO model and 
identified 33 candidate genes.

Furthermore, a dataset was created that integrates 
the expression profiles of the selected genes with their 
associated clinical features for analysis using XGBoost. 
XGBoost, an efficient ensemble learning method, opti-
mizes a regularized objective function using a gradient 
boosting framework [28]. Through model training and 

feature importance evaluation by “XGBoost” (version: 
1.7.8.1), 42 candidate genes were identified from an ini-
tial set of 291 hub genes. These candidates are potentially 
pivotal in the onset and progression of the disease. The 
XGBoost model was trained using default parameters 
for max_depth (5), eta (0.3), and nround (25), which are 
commonly recommended to balance model complexity 
and performance, and its stability was assessed through a 
fivefold cross-validation process.

Ultimately, biomarkers were identified through an inte-
grative approach employing LASSO regression, Random 
Forest, and XGBoost methodologies. The diagnostic effi-
cacy of these biomarkers was assessed via ROC curve 
analysis, with the AUC calculated using the “pROC” R 
package. A Venn diagram was utilized to depict the over-
lap of results obtained from LASSO, Random Forest, and 
XGBoost. Heatmaps were created using the "pheatmap" 
(version 1.0.12) packages.

Development and validation of a prognostic model 
for thyroid cancer based on multivariate Cox regression 
and nomogram analysis
We employed the survminer package (version 0.5.0) to 
conduct a multivariate Cox regression analysis. Using the 
expression data and regression coefficients of the genes 
TFF3, EYA1, RPS6KA5, and P4HA2, we calculated a risk 
score for each sample. Subsequently, the samples were 
stratified into low- and high-risk subgroups in a 3:1 ratio 
based on their risk scores. We then utilized the survival 
package to visualize the distribution of survival times 
between the high-risk and low-risk groups. Additionally, 
we constructed time-dependent ROC curves and calcu-
lated the AUC at 1-, 3-, and 5-year survival time points 
using the timeROC package (version 0.4).

We further performed a multivariate Cox regression 
analysis to assess the independent prognostic significance 
of clinical stage, gender, race, age, and risk score in TC. 
By integrating these variables, we determined the inde-
pendence of each factor and its impact on clinical out-
comes. Moreover, using the rms package (version 6.8–2), 
we developed a nomogram to facilitate the prediction of 
1-, 3-, and 5-year survival probabilities for TC patients 
based on individual characteristics. The diagnostic per-
formance of the model was evaluated using the pROC 
package.

Immune infiltration analysis
Immune cell infiltration was assessed using the CIBER-
SORT algorithm for estimating relative subsets of RNA 
transcripts along with correlation analysis between infil-
trating immune cells and biomarkers. For the immune 
infiltration analysis, the input data was standardized by 
converting FPKM data to TPM (transcripts per million). 
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This standardization method ensures that the gene 
expression data are on a comparable scale across different 
samples, which is crucial for accurate CIBERSORT analy-
sis. Patients were divided into P4HA2-high and P4HA2-
low expression groups based on the median expression 
level of P4HA2. The CIBERSORT algorithm was then 
used to determine the infiltration levels of immune cells 
in the P4HA2-high and P4HA2-low groups. The rela-
tive abundance of each of the 22 immune cell subtypes 
was calculated for each sample, with 1000 iterations per-
formed per sample [29].

Functional enrichment analysis
Conduct differential expression analysis between the 
P4HA2-high and P4HA2-low groups to pinpoint upreg-
ulated genes, which will subsequently be analyzed using 
gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses to uncover 
their biological roles. We employed the "clusterProfiler" 
R package (version:4.12.6) to perform GO and KEGG 
enrichment analysis, evaluating biological processes (BP), 
molecular functions (MF), cellular components (CC), 
and gene-associated signaling pathways. Following this, 
the findings from the GO and KEGG pathway analyses 
were depicted using the ggplot2 (version: 3.5.1) package. 
An adjusted p-value of less than 0.05 was deemed to indi-
cate statistical significance.

Cell culture and cell transfection
The normal human thyroid cell line Nthy-ori 3–1 and 
human thyroid cancer cell lines FTC238, IHH4, FTC133, 
BCPAP, TCO-1, TPC-1, 8505C, CAL62, SW579, K1, 
TTA1 were all sourced from Zhejiang Provincial People’s 
Hospital (Zhejiang, China). Nthy-ori 3–1, IHH4, BCPAP, 
and TPC-1 cells were grown in RPMI-1640 complete 
medium, which was enriched with 10% (vol/vol) fetal 
bovine serum (FBS) and 1% (vol/vol) antibiotics (100 U/
mL penicillin and streptomycin) (Thermo, USA). FTC238 
cells were maintained in a DMEM/F-12(HAM)1:1 com-
plete medium, also supplemented with 10% (vol/vol) FBS 
and 1% (vol/vol) antibiotics (100 U/mL penicillin and 
streptomycin) (Thermo, USA). FTC133, TCO-1, 8505C, 
CAL62, SW579, K1, and TTA1 cells were cultured in 
DMEM complete medium, containing 10% (vol/vol) FBS 
and 1% (vol/vol) antibiotics (100 U/mL penicillin and 
streptomycin) (Thermo, USA). All these cell lines were 
incubated in a humidified environment at 37 °C with 5% 
 CO2.

To assess the effects of the P4HA2 gene on the biologi-
cal characteristics of thyroid cancer cell lines, cells from 
the FTC238, TPC-1, and K1 lines were plated at a den-
sity of 4 × 10^5 cells per well in a 6-well cell culture plate, 
14  h before transfection. Transfection was performed 

using P4HA2 siRNA/overexpression vectors with Lipo-
fectamine 3000 (Invitrogen, USA). siRNA was transfected 
at a concentration of 50 nM according to the instructions, 
and cells were collected 48 h later. The siRNA sequences 
are as follows: genOFF™ st-h-P4HA2_001: GAA GGT 
GAC TAC CGA ACA A; genOFF™ st-h-P4HA2_002: GCC 
GAA TTC TTC ACC TCT A; genOFF™ st-h-P4HA2_003: 
GCT GCA ATT TGG CCT AAG A (RiboBio, China). After 
an 8-h transfection period, the medium was changed to 
a complete medium, and the cells were cultured for an 
additional 40  h in the incubator before being harvested 
for further examination.

RT qPCR
TRIzol reagent (Invitrogen, USA) was used to extract 
RNA from the cultured cells. Using the HiScript II Q RT 
SuperMix from Vazyme, China, the extracted RNA was 
converted into complementary DNA (cDNA). Quantita-
tive real-time PCR (RT qPCR) was conducted using the 
ChamQ Universal SYBR qPCR Master Mix (Vazyme, 
China) on a BioRad CFX96 Touch™ Real-Time PCR 
Detection System (BioRad, CA). Threshold cycle (Ct) val-
ues were obtained and analyzed using the BioRad CFX 
Manager Software version 5.0. In the experiment, the 
human primer sequences are detailed in Table 1, and 18S 
ribosomal RNA (18S) was used as the reference gene for 
normalization purposes.

Western blot
Protein extraction from TPC-1, FTC238, and K1 cells 
was carried out using RIPA lysis buffer, followed by sepa-
ration of protein samples via SDS-PAGE. Subsequent 
protein transfer onto polyvinylidene fluoride (PVDF) 
membranes was performed. Blocking with 5% non-fat 
milk was followed by an overnight incubation of primary 
antibodies at 4  °C. The membranes were then washed 
thrice with Tris-Buffered Saline Tween-20 (TBST), incu-
bated with secondary antibodies at room temperature for 
1 h, and detection was carried out using the Amersham 
ImageQuant 800 system (Cytiva, Tokyo, Japan). Follow-
ing three washes with TBST, the membranes were incu-
bated with secondary antibodies at room temperature for 

Table 1 Primers used for RT qPCR in this study

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

P4HA2 AAA AGG GCA TCG TGG ACA GA CAC AGA GGG AAG TGT CTG GG

TBC1D4 CCC GAG AGG TGA TCC TGG T TAA CAT CAG GAA CCT GGC TGG 

PRKCQ CCG TGC TCG CTC CAGG ACA TCT GCC CGT TCT CTG ATT 

PLSCR4 AGG CCA CTC GCA GCTTG ATA GGC AAG CCT CCT GGG TA

18s CCT TTG CCA TCA CTG CCA TT CAC ACG TTC CAC CTC ATC CTC 
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one hour, and detection was conducted using the Amer-
sham ImageQuant 800 system (Cytiva, Tokyo, Japan).

CCK-8 assay for cell proliferation
Healthy log-phase cells were placed into 96-well plates at 
a concentration of 1 ×  105 cells per well. Following a 12-h 
incubation period to ensure full cell adhesion, the cells 
were transfected with either overexpression plasmids 
or siRNA. Multiple replicates were prepared for each 
experimental group, which included the following: Vec-
tor (empty vector control), OE (P4HA2 overexpression 
group), si-NC (nonspecific siRNA control group), and 
si-P4HA2 (P4HA2-specific siRNA knockdown group). At 
0, 24, 48, 72, and 96 h post-treatment, DMEM medium 
mixed with CCK-8 reagent (Vazyme, China) at a 10:1 
ratio was introduced into each well. Following a 2-h incu-
bation in a humidified incubator, the absorbance of the 
plates was measured at 450 nm with a Tecan Spark mul-
timode microplate reader from Tecan, Switzerland. The 
readings recorded at 0, 24, 48, 72, and 96 h were used to 
evaluate and calculate the cell proliferation capacity.

Transwell-based cell migration studies
A transwell migration assay was employed in this study 
to evaluate how well cells can migrate. The experimental 
procedure was as follows: first, cells were washed twice 
with phosphate-buffered saline (PBS) to remove surface 
residues. Trypsin was used to digest the cells, creating a 
suspension of single cells. To eliminate the influence of 
cell proliferation on migratory capacity, cells were resus-
pended in a serum-free medium. Cell density was care-
fully calibrated to 5 ×  105 cells/mL. The assay employed 
transwell chambers with an 8  μm pore size in 24-well 
plates from Corning. Before the experiment, the cham-
bers were hydrated with serum-free DMEM medium for 
30 min to ensure membrane moisture. Following hydra-
tion, the medium was aspirated, and 200 μL of cell sus-
pension without serum was introduced into the upper 
chamber. Concurrently, 600 μL of complete medium with 
10% FBS was added to the lower chamber. In a 5% CO₂ 
incubator set at 37  °C, cells were incubated for 48  h to 
encourage migration through the transwell membrane, 
with migrated cells attaching to the membrane’s under-
side. After the experiment concluded, the transwell 
chambers were taken out and carefully rinsed with PBS. 
The cells were then fixed using 4% paraformaldehyde for 
15  min to maintain their structure. Following fixation, 
the cells were stained with 0.1% crystal violet for 15 min 
to facilitate observation under a microscope. The upper 
surface of the membrane was gently wiped with a cotton 
swab to remove excess crystal violet, and the chambers 
were air-dried. The underside of the transwell mem-
brane was then observed using an inverted microscope, 

with five random fields photographed and counted. Each 
experimental group was conducted three times to guar-
antee the reliability of the results. This rigorous proto-
col allowed for an accurate assessment of cell migratory 
ability, providing essential data for subsequent biological 
research.

Wound healing assay
During this experiment, cells were placed into 6-well 
plates. Overnight incubation of the plates at 37  °C with 
5% CO₂ allowed the cells to reach full confluence. A 
straight scratch was made across the cell monolayer using 
a sterile 200 μL pipette tip, creating a uniform wound. 
The wells were gently washed three times with PBS to 
remove floating cells and debris. Serum-free medium was 
then added to eliminate the influence of cell proliferation 
on migration results.

According to the experimental design, the following 
groups were established: Vector (empty vector control), 
OE (P4HA2 overexpression), si-NC (nonspecific siRNA 
control), and si-P4HA2 (P4HA2-specific siRNA knock-
down). Migration at the scratch site was documented 
at 0  h and 24  h (or at specified time points) using an 
inverted microscope to capture images of the same field 
of view. Each experiment was performed in triplicate 
to ensure reliability. The scratch closure was quanti-
fied using ImageJ software by measuring changes in the 
wound area. The cell migration rate was calculated using 
the following formula:

This procedure allowed for accurate assessment of 
cell migration and provided a reliable basis for further 
analysis.

In vitro colony forming assay
In this experiment, cells were extracted from the loga-
rithmic growth phase and treated with trypsin–EDTA 
solution for digestion. The cells were then dispersed into 
a single-cell suspension using gentle pipetting. The cell 
suspension was subsequently diluted to 500 cells per well 
and seeded into 6-well plates, ensuring adequate space 
for individual colonies to form. The plates were gently 
shaken to achieve uniform cell distribution. The plates 
were incubated in a 37  °C, 5% CO₂ environment for a 
period of 7 to 14  days. During the cultural period, the 
formation of colonies was regularly monitored. Once the 
colonies reached a size visible to the naked eye, fixation 
was performed.

The process began by removing the medium and gently 
washing the cells with PBS buffer. Next, 4% paraformal-
dehyde was introduced into each well to fix the cells at 

Migration rate =
Initial wound area− final wound area

Initial wound area
× 100%.
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room temperature for 10 to 15  min. After the fixation 
process was finished, the cells were rinsed again with 
PBS buffer, followed by the addition of a 0.1%crystal vio-
let staining solution for 10 to 30 min at room tempera-
ture. Following staining, the cells were carefully rinsed 
with PBS to eliminate any surplus dye until the solution 
became clear. After the colonies dried, they were exam-
ined under a microscope, and the colonies were counted. 
This process could be done manually or automated using 
ImageJ analysis software.

Immunofluorescence
In the experiment, cells were used to prepare a suspen-
sion with a concentration of 5 ×  105 cells/mL. A suitable 
amount of culture medium was added to the position 
on a 24-well plate where the coverslips would be placed. 
The coverslips were gently placed in the wells, and cells 
were seeded onto the coverslips. Once the cells reached 
an appropriate density, the coverslips were removed and 
fixed with 4% paraformaldehyde for 15  min. After fixa-
tion, the coverslips were washed with PBS buffer and 
blocked with 500 μL of blocking solution for 60  min. 
During this time, the primary antibody solution was pre-
pared using antibody diluent.

Once blocking was complete, the coverslips were 
rinsed with PBS buffer and left with the primary antibody 
at 4 °C overnight. The next day, they were washed three 
times with PBS for 5 min each to eliminate any unbound 
primary antibody. Then, an Alexa Fluor 488-conjugated 
secondary antibody (Thermo Fisher Scientific, USA) 
was added and incubated at room temperature for 1 h in 
the dark. After incubation, the coverslips were washed 
three times with PBS for 5  min each to remove any 
unbound secondary antibody. Ultimately, the coverslips 
were affixed using an anti-fade mounting medium that 
included DAPI (ProLong™ Diamond, Invitrogen), taking 
care to avoid the formation of any air bubbles during the 
procedure.

Fluorescent signals were detected and recorded using a 
confocal microscope (NIKON, Japan) at the appropriate 
wavelengths. The fluorescence intensity or the propor-
tion of positive cells was measured using ImageJ software 
to evaluate the expression levels of the cell markers.

Statistical analysis
Data are expressed as mean ± standard deviation (SD). 
Statistical analyses were conducted using R software (R 
version 4.4.0) and GraphPad Prism 9.5. Comparisons 
between the two groups were conducted using a Student’s 
t-test. To control the false discovery rate and account for 
multiple testing, we applied the Benjamini–Hochberg 

method for multiple test correction. In this study, a 
P-value < 0.05 was considered statistically significant.

Result
Identification of TC-correlated genes with DEGs 
and WGCNA
During the analysis of the TCGA-THCA dataset, we 
identified DEGs in TC samples (n = 512) and normal 
samples (n = 59). To visually represent these DEGs, we 
constructed a volcano plot (Fig. 1A). Comprehensive data 
are presented in Supplementary Table  S1. Additionally, 
we conducted WGCNA analysis on the complete tran-
scriptome dataset.

In the initial stage of WGCNA, we constructed a sam-
ple clustering dendrogram to identify and remove outlier 
samples (Fig. 1B). To convert Pearson correlation coeffi-
cients into a weighted adjacency matrix, we determined 
an optimal soft-thresholding exponent (β) to make the 
network topology more closely align with a scale-free dis-
tribution (Fig. 1C). Using the adjacency matrix, we calcu-
lated the topological overlap matrix and generated a gene 
dynamic tree cut dendrogram (Fig. 1E).

Subsequently, we identified the module most strongly 
correlated with TC and normal samples, the red mod-
ule (correlation coefficient = 0.66, p < 3e−49) (Fig. 1D, F). 
Ultimately, a comparative analysis was conducted involv-
ing the differentially expressed genes (DEGs) (n = 12,764) 
and the genes within the red module (n = 1431) (Fig. 1G), 
resulting in the identification of 1359 common genes. 
These genes, listed in detail in Table  S2, will be further 
investigated in subsequent studies.

Identification of key genes associated with TC
In this investigation, we performed a comprehensive 
analysis of the PPI network involving the 1,359 overlap-
ping genes to pinpoint the central hub genes. These hub 
genes were identified based on their substantial interac-
tion connectivity, which suggests their critical regula-
tory roles within the network. Through the construction 
of the PPI network, we identified 291 hub genes charac-
terized by high interaction frequency, suggesting their 
potential roles as core regulators within the network 
(Fig. 2A). These key nodes can be seen in Supplementary 
Table S3.

To narrow down the list of candidate genes, we utilized 
three machine-learning techniques for feature extraction. 
First, the XGBoost method, an ensemble learning method 
based on gradient-boosted decision trees, was used to 
assess feature importance, resulting in the identification 
of 42 genes with significant contributions (Fig. 2B). Sec-
ond, we applied the LASSO regression algorithm, which 
performs feature selection through L1 regularization 
and successfully identified 33 genes (Fig.  2C, D). Lastly, 
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Fig. 2 Advanced analytics of key genes and machine learning insights. A Protein–protein interaction (PPI) network analysis of genes 
identified in Fig. 1F intersection. B Feature importance derived from XGBoost model. C Coefficient path plot from LASSO regression analysis. D 
Cross-validation curve from LASSO regression analysis. E Error curve of Random Forest model. F Feature importance from Random Forest model. G 
Intersection of hub genes from PPI network and genes identified by machine learning models
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the RF algorithm, an ensemble method combining mul-
tiple decision trees to improve predictive accuracy, was 
utilized. Based on feature importance scores, we selected 
the top 10 genes with scores greater than 25 as key fea-
ture genes (Fig. 2E, F). These genes are presented in Sup-
plementary Table S4-6.

By integrating the results from these three machine 
learning methods, we identified four genes as the final 
consensus feature genes (TFF3, EYA1, RPS6KA5, and 
P4HA2) (Fig.  2G). These genes were selected not only 
based on their high interaction frequency in the PPI net-
work, but also on their importance scores across multiple 
machine learning models. These findings highlight the 
pivotal roles of these genes as regulatory hubs within the 
network, offering new insights into the molecular mecha-
nisms underlying network regulation. Moreover, these 
genes represent potential targets for future biological 
research and clinical applications.

Of the four hub genes, TFF3, EYA1, and RPS6KA5 were 
lowly expressed in cancerous tissues, whereas P4HA2 
demonstrated upregulated expression in the cancer tis-
sues (Fig.  3A). To assess the diagnostic efficacy of each 
gene, we validated their performance within the TCGA-
THCA dataset, revealing that the AUC for each gene 
surpassed 0.95 (Fig.  3B), indicating their potential for 
effective diagnosis of TC. Furthermore, in the external 
validation using the GSE29265 and GSE33630 datasets, 
we consistently observed the downregulation of TFF3, 
EYA1, and RPS6KA5, and the upregulation of P4HA2 in 
thyroid cancer tissues (Fig. 3C, D). These results highlight 
the possibility of using these genes as diagnostic markers 
for TC, with their expression patterns robustly associat-
ing with disease status across independent datasets.

Development and validation of a prognostic risk model 
for thyroid cancer
Subsequently, we constructed a thyroid cancer risk model 
based on the four hub genes and calculated the risk score 
using a multivariate Cox regression model (Fig. S1A). The 
risk score formula is as follows: 0.0001230044*TFF3 + 0.
0094348493*P4HA2 + 0.7060780955*RPS6KA5 + 2.54693
80036*EYA1. Figure S1B shows that the high-risk group 
had significantly worse survival outcomes (P = 0.00058). 
The time-dependent ROC curves for 1-year, 3-year, and 
5-year survival demonstrated AUC values of 0.708, 0.799, 
and 0.682, respectively (Fig. S1C). Multivariate Cox 
regression analysis indicated that age is an independ-
ent prognostic factor for thyroid cancer, while the risk 
score did not qualify as an independent prognostic factor 
(Fig. S1D). Furthermore, a nomogram model integrating 
clinical features and the risk score was developed, which 
exhibited a high diagnostic capacity with an AUC value 
of 0.946 (Fig. S1E and Fig. S1F). Although the risk score 

based on these four genes effectively assessed survival 
outcomes, it could not serve as an independent prognos-
tic factor.

Elevated expression of P4HA2 in TC cell lines
To validate the bioinformatics-derived expression pat-
terns, we employed RT qPCR and Western blot tech-
niques to evaluate the expression of P4HA2 at both 
mRNA and protein levels in normal thyroid cells (Nthy-
ori3-1) as well as in nine different thyroid cancer cell 
lines. Our findings revealed markedly elevated mRNA 
and protein levels of P4HA2 in FTC238, TPC-1, and K1 
cell lines in comparison to Nthy-ori3-1 cells (Fig. 4A, B). 
As a result, these cell lines were chosen for additional 
in vitro experiments.

Optimization of P4HA2 knockdown and overexpression 
efficiency
To explore the optimal experimental conditions for sub-
sequent research, we conducted transient transfection 
experiments using the TPC-1 cell line. The goal was 
to screen for specific siRNAs and determine the opti-
mal working concentration of the P4HA2 overexpres-
sion plasmid. Western blotting was utilized to assess 
the knockdown efficiency of various siRNAs, which 
showed that si-P4HA2-2 had the highest knockdown 
efficiency (Fig.  4C). Moreover, results from both West-
ern blot and immunofluorescence assays confirmed that 
at a transfection concentration of 1  μg/mL, the P4HA2 
overexpression plasmid achieved more effective protein 
overexpression in the TPC-1 cell line (Fig. 4D, E). These 
findings provide critical parameters and conditions for 
future experiments.

Knockdown of P4HA2 inhibits TC cells proliferation in vitro
To delve deeper into the function of P4HA2 in TC cell 
lines, we utilized si-P4HA2-2 to transiently knock down 
the level of expression of P4HA2 in FTC238, TPC-1, and 
K1 cells. The knockdown efficiency was confirmed at 
both mRNA and protein levels through RT qPCR, West-
ern blot, and immunofluorescence analyses (Fig. 5A–C). 
Subsequent CCK-8 and colony formation assays showed 
a notable decrease in the rate of proliferation of FTC238, 
TPC-1, and K1 cells with P4HA2 knockdown. Moreover, 
the number of colonies formed by cells with P4HA2 defi-
ciency was significantly fewer compared to control cells 
under identical culture conditions (Fig.  5D, E). These 
findings suggest that P4HA2 knockdown effectively sup-
presses the in vitro proliferative capacity of TC cell lines.
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Fig. 3 Expression levels of the four genes in the training set. A receiver operating characteristic (ROC) analysis of the core genes in the training 
set. B The area under the ROC curve (AUC) for key gene markers. C Expression levels of the four genes in GSE29265. D Expression levels of the four 
genes in GSE33630
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Knockdown of P4HA2 inhibits TC cell migration in vitro
To investigate the effects of P4HA2 knockdown on addi-
tional biological activities of TC cells, we carried out 
scratch wound healing and transwell migration tests. 
In the scratch wound closure experiment, transient 
knockdown of P4HA2 significantly impaired the migra-
tory ability of FTC238, TPC-1, and K1 cell lines in vitro 
(Fig. 6A). Quantitative analysis of the wound closure area 
and migration speed demonstrated a significant associa-
tion between P4HA2 expression levels and the migration 
ability of TC cells. These results were further corrobo-
rated by transwell migration assays, which demonstrated 
that P4HA2-knockout cell lines exhibited a substantially 
reduced migration capacity under conditions simulating 
in  vivo migration (Fig.  6B). Collectively, these findings 
indicate that P4HA2 knockdown effectively inhibits the 
migratory capacity of TC cell lines in vitro.

Overexpression of P4HA2 promotes TC cell proliferation and 
migration in vitro
To further verify the impact of P4HA2 expression on the 
biological characteristics of TC cells, we employed a tran-
sient transfection strategy to introduce a P4HA2 overex-
pression plasmid into FTC238, TPC-1, and K1 cell lines. 
Successful overexpression of P4HA2 at the mRNA and 
protein levels was validated through RT qPCR, Western 
blot, and immunofluorescence assays (Fig. 7A–C). Subse-
quent CCK-8 and colony formation experiments showed 
that the overexpression of P4HA2 markedly increased 
the proliferation rate and colony formation capability 
of FTC238, TPC-1, and K1 cells relative to the control 
groups (Fig.  7D, E). Additionally, scratch wound clo-
sure and transwell migration experiments indicated that 
increased P4HA2 expression substantially enhanced the 
migration ability of TC cells in vitro (Fig. 8A, B). Taken 
together, these results demonstrate that P4HA2 overex-
pression markedly enhances the in vitro proliferation and 
migration capabilities of TC cells.

GO, KEGG and immune cell infiltration in P4HA2-HIGH
To clarify the mechanism of P4HA2 in TC, we divided 
the TC tissues in TCGA-THCA into two groups, P4HA2-
Low and P4HA2-High, according to the expression of 
P4HA2. To explore the correlation between P4HA2 
and the TC immune microenvironment, we performed 

CIBERSORT algorithm on P4HA2-Low and P4HA2-
High groups. The findings revealed that, in contrast to 
the P4HA2-low group, the P4HA2-high group showed 
markedly higher infiltration levels of resting dendritic 
cells, M0 macrophages, M2 macrophages, resting mast 
cells, and regulatory T cells (Tregs). In contrast, the 
infiltration levels of memory B cells, M1 macrophages, 
neutrophils, plasma cells, and CD8 + T cells were signifi-
cantly reduced (Fig. 9A). Furthermore, P4HA2 expression 
levels were positively correlated with resting dendritic 
cells, regulatory T cells, M0 and M2 macrophages, while 
negatively correlated with CD8 + T cells, CD4 + T cells, 
natural killer (NK) cells, and M1 macrophages (Fig. 9B). 
To provide a more comprehensive view, we have meticu-
lously annotated the correlations between P4HA2 and 
various immune cells, complemented by their respective 
P-values (Fig. 9C).

Next, we analyzed the DEGs of the P4HA2-High and 
P4HA2-Low groups using the R package “Limma”. Addi-
tionally, these DEGs were subjected to GO and KEGG 
enrichment analysis. The KEGG analysis further indi-
cated that the DEGs were enriched in pathways related 
to cancer progression, such as bacterial invasion of epi-
thelial cells, adherens junctions, lysosome function, tight 
junctions, proteoglycans in cancer, and various bacterial 
infection pathways. These pathways, which encompass 
cell interactions, signal transduction, and intracellular 
structural regulation, indicate a significant role in facili-
tating cancer development and metastasis (Fig. 9D). The 
GO analysis indicated that the high-expression cohort of 
the P4HA2 gene was enriched in several oncogenic path-
ways, which are integral to critical biological processes 
such as intercellular signaling, protein functionality, and 
organelle trafficking. Notably, the pathways implicated 
include those associated with cell–matrix interactions, 
such as focal adhesion and cell–matrix binding, which are 
pivotal for cellular adhesion, migration, and invasion—
parameters intrinsically linked to tumorigenesis and can-
cer spread (Fig. 9E). The enrichment of pathways related 
to the lysosomal membrane and endoplasmic reticu-
lum further underscores the significance of intracellular 
membrane structures in the context of material trans-
port, degradation, and signal transduction within the 
cell. Additionally, the enrichment of pathways involving 
cytoplasmic small GTPase binding and GTPase binding 

Fig. 4 P4HA2 functions as an oncogene in thyroid cancer. A RT qPCR analysis quantifies P4HA2 mRNA expression in thyroid cancer cell lines 
compared to normal thyroid cells. B Western blot analysis evaluates P4HA2 protein expression in thyroid cancer cell lines and normal thyroid cells. 
C Western blot analysis confirms the knockdown efficiency of P4HA2 using siRNA in TPC-1 cells. D Western blot analysis examines the efficiency 
of P4HA2 overexpression across a concentration gradient in TPC-1 cells. E Immunofluorescence (IF) analysis validates the efficiency of P4HA2 
overexpression across a concentration gradient in TPC-1 cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (scar bar = 100 μm)

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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suggests an active role in cell signaling, potentially tied to 
proliferative and metastatic signaling cascades. Together, 
these pathways offer valuable insights into the potential 
role of P4HA2 in oncogenic mechanisms. The relevant 
details can be found in Supplementary Table S7, S8.

Discussion
Main interpretation
Thyroid cancer is a malignant neoplasm originating in 
the thyroid gland, and its global incidence has markedly 
increased in recent years. According to recent data from 
the International Agency for Research on Cancer (IARC) 
and GLOBOCAN 2022 statistics, thyroid cancer ranks as 
the seventh most prevalent malignancy worldwide and 
the fifth most common among women [6, 30, 31]. Nota-
bly, in 2022, China accounted for an estimated 466,000 
new cases of thyroid cancer, representing more than half 
of the global total [32, 33].

Although fine-needle aspiration biopsy (FNAB) under 
ultrasound guidance is currently the primary method for 
assessing thyroid nodules, its diagnostic accuracy and 
consistency are contingent upon the operator’s experi-
ence and technical proficiency, resulting in inter-indi-
vidual variability in interpretation [34–36]. Furthermore, 
early diagnosis remains challenging due to the small size, 
concealed location, or atypical pathological features of 
certain lesions. When FNAB results are inconclusive, 
additional molecular marker testing may be necessary 
to support the diagnosis [37]. Currently, the molecu-
lar markers most frequently utilized in clinical practice 
include BRAF mutations, RAS mutations, RET/PTC 
rearrangements, and PAX8/PPARγ fusion genes [38–40]. 
Among these, The BRAF V600E mutation is predomi-
nantly associated with PTC, with meta-analyses report-
ing a specificity of up to 99%. However, its sensitivity is 
relatively low, approximately 60%, indicating that not all 
thyroid cancer patients exhibit BRAF mutations [41]. 
While the BRAF V600E mutation is closely linked to 
PTC, it has a limited association with other thyroid can-
cer subtypes, such as follicular and medullary carcinomas 
[42]. Therefore, the BRAF V600E mutation cannot be 
considered a universal biomarker for all thyroid cancer 
types, and its clinical utility is inherently restricted [43, 
44]. RAS mutations, on the other hand, display complex 

biological mechanisms and have low diagnostic sensitiv-
ity and specificity. These mutations are more frequently 
observed in follicular thyroid carcinoma (FTC) than in 
PTC [45]. Furthermore, given that RAS mutations occur 
across a variety of cancer types, their specificity is inad-
equate for use as a standalone diagnostic tool [46]. RET/
PTC rearrangements are detected in about 10–20%of 
PTC cases, suggesting that a substantial proportion of 
PTC patients do not exhibit this genetic alteration, thus 
limiting its effectiveness as a universal biomarker [47, 
48]. Additionally, RET/PTC rearrangements are more 
commonly detected in radiation-induced PTC, further 
restricting their relevance as biomarkers for PTC cases 
not associated with radiation exposure [49]. Some stud-
ies have also suggested a correlation between RET/PTC 
rearrangements and multifocality in thyroid cancer, 
potentially reducing their diagnostic utility as standalone 
markers [50, 51].

In recent years, considerable research has been focused 
on discovering new biomarkers for thyroid cancer. Multi-
omics investigations have uncovered precise molecular 
markers. For example, Montero-Conde et al. [52]. identi-
fied new prognostic markers related to chromatin spatial 
organization at the 5pter and TERT loci through RNA 
sequencing of 106 tumor samples, establishing TRER and 
TREC as independent prognostic indicators. Similarly, 
Shi et al. employed exome-wide sequencing, RNA profil-
ing, DNA methylation analysis arrays, proteomics, and 
phosphoproteomics to develop a comprehensive multi-
omics atlas of 102 medullary thyroid carcinoma (MTC) 
samples. The study identified novel driver genes, includ-
ing BRAF and NF1, and delineated three molecularly 
heterogeneous subtypes of medullary thyroid carcinoma 
(MTC) through proteomics-based stratification. Addi-
tionally, two members of the tenascin family, TNC and 
TNXB, emerged as potential prognostic biomarkers for 
MTC [53]. As high-throughput molecular biology tech-
nologies advance rapidly, there is a growing emphasis on 
the role of non-coding RNAs in thyroid cancer research. 
These molecules, encompassing microRNAs (miRNAs) 
and circular RNAs (circRNAs), are characterized by 
enriched expression and stability, rendering them advan-
tageous for biomarker development [54]. CircRNAs, in 
particular, have demonstrated potential as biomarkers; 

(See figure on next page.)
Fig. 5 Knockdown of P4HA2 inhibits the in vitro proliferation of TC cells. A Western blot analysis was used to evaluate the knockdown efficiency 
of P4HA2 protein in FTC238, TPC-1, and K1 cells. B RT qPCR analysis assessed the knockdown efficiency of P4HA2 mRNA in FTC238, TPC-1, and K1 
cells. C Immunofluorescence (IF) analysis confirmed the knockdown efficiency of P4HA2 in FTC238, TPC-1, and K1 cell lines (scar bar = 100μm). D 
The CCK-8 assay was performed to evaluate the effect of P4HA2 knockdown on the proliferation rate of FTC238, TPC-1, and K1 cells in vitro. E Colony 
formation assays measured changes in colony formation capacity in FTC238, TPC-1, and K1 cells following P4HA2 knockdown. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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Fig. 5 (See legend on previous page.)
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Fig. 6 Knockdown of P4HA2 inhibits the in vitro migration of TC cells. A Wound healing assays were performed to evaluate alterations 
in the migration capacities of FTC238, TPC-1, and K1 cells following P4HA2 knockdown. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (scar 
bar = 100 μm). B Transwell migration assays were used to assess the impact of P4HA2 knockdown on the migratory abilities of FTC238, TPC-1, and K1 
cell lines (scar bar = 100 μm)

(See figure on next page.)
Fig. 7 Overexpression of P4HA2 promotes the in vitro proliferation of TC cells. A Western blot analysis was used to evaluate the overexpression 
efficiency of P4HA2 protein in FTC238,TPC-1, and K1 cells. B RT qPCR analysis assessed the overexpression efficiency of P4HA2 mRNA 
in FTC238,TPC-1,and K1 cells. C Immunofluorescence(IF)analysis confirmed the overexpression efficiency of P4HA2 in FTC238,TPC-1,and K1 cell lines 
(scar bar = 100μm). D The CCK-8 assay was performed to evaluate the effect of P4HA2 overexpression on the proliferation rate of FTC238,TPC-1,and 
K1 cells in vitro. E Colony formation assays measured changes in colony formation capacity in FTC238, TPC-1, and K1 cells following P4HA2 
overexpression. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Fig. 7 (See legend on previous page.)
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for instance, circFAT1 and circRNA_102171 have been 
associated with the proliferation and invasiveness of PTC 
[55]. Nonetheless, further investigations are required to 
substantiate their clinical efficacy and reliability. System-
atic reviews and meta-analyses have highlighted markers 

such as HBME-1, Galectin-3 (Gal-3), and Cytokeratin-19 
(CK19) as valuable auxiliary molecular markers for PTC 
[56, 57]. While these markers have shown utility in the 
diagnosis and treatment of thyroid cancer, their effec-
tiveness is constrained by limitations in sensitivity, 

Fig. 8 Overexpression of P4HA2 promotes the in vitro migration of TC cells. A Scratch wound healing assays were performed to assess changes 
in the migration capacity of FTC238, TPC-1, and K1 cells following P4HA2 overexpression. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (scar 
bar = 100μm). B Transwell migration assays were conducted to evaluate the effect of P4HA2 overexpression on the migration ability of FTC238, 
TPC-1, and K1 cells
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Fig. 9 GO, KEGG and immune infiltration in P4HA2-high group. A Immune cell infiltration profiles in high and low P4HA2 expression groups 
assessed using CIBERSORT. B Correlation between P4HA2 expression levels and various immune cell types evaluated through CIBERSORT analysis. 
C Comprehensive associations between P4HA2 expression and individual immune cell populations identified by CIBERSORT. D KEGG analysis. E GO 
analysis
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specificity, and a lack of universal applicability across 
all thyroid cancer subtypes. This highlights the pressing 
clinical need for more effective diagnostic tools.

This study employs transcriptome sequencing data and 
advanced bioinformatics techniques to perform a com-
prehensive analysis of gene expression profiles in thyroid 
cancer, with the objective of identifying novel diagnostic 
and prognostic biomarkers. The initial phase involved 
extracting pertinent data from the TCGA database and 
conducting differential expression analysis between thy-
roid cancer tissues and adjacent normal tissues. Utiliz-
ing WGCNA, gene modules most strongly associated 
with cancerous and non-cancerous groups were identi-
fied. Subsequently, the intersection of DEGs and mod-
ule-specific genes underwent PPI analysis, resulting in 
the identification of over 200 key node genes with con-
fidence scores exceeding 905. Through the application of 
three distinct machine learning algorithms, four genes 
with notable diagnostic and prognostic potential were 
identified: TFF3, EYA1, RPS6KA5, and P4HA2. It was 
observed that TFF3, RPS6KA5, and RPS6KA5 are down-
regulated in thyroid cancer tissues, whereas P4HA2 is 
upregulated. Consequently, P4HA2 was selected for fur-
ther investigation. The identification of these biomarkers 
offers promising prospects for enhancing early molecular 
diagnosis and gene-targeted therapy in thyroid cancer, 
potentially improving diagnostic precision and therapeu-
tic specificity.

Recent studies have demonstrated that P4HA2 is sig-
nificantly overexpressed in various tumors, thereby accel-
erating their malignant progression, including in B-cell 
lymphoma, breast cancer, and prostate cancer [58, 59]. 
Notably, during tumor progression, abnormal collagen 
deposition can facilitate the invasion and metastasis of 
tumor cells [60]. Collagen deposition can alter the physi-
cal and chemical properties of the extracellular matrix 
(ECM), such as its stiffness and porosity. These changes 
can influence the behavior of tumor cells, including their 
migration and invasion capabilities. For example, a stiffer 
ECM can provide more resistance to cell movement, but 
it can also activate certain signaling pathways that pro-
mote cell proliferation and survival [59, 61, 62].

Recent research has found that P4HA2 promotes col-
lagen deposition and ECM stiffening through the hydrox-
ylation of collagen precursors, playing a crucial role in 
regulating collagen deposition and signaling pathways in 
tumor progression. P4HA2 regulates cancer cell behav-
ior by enhancing collagen synthesis and is closely asso-
ciated with hypoxia, collagen deposition, glycolysis, and 
the migration and invasion of cancer cells [63–65]. Stud-
ies have shown that a stiffer ECM can enhance tumor cell 
invasiveness through mechanical signaling (e.g., activa-
tion of YAP/TAZ) and promote epithelial–mesenchymal 

transition (EMT) [66, 67]. For instance, in breast cancer, 
increased collagen deposition is significantly correlated 
with elevated tumor stiffness, which activates the integ-
rin–FAK signaling pathway, thereby driving cell migra-
tion [68, 69]. In hepatocellular carcinoma, overexpression 
of P4HA2 significantly increases collagen deposition, 
activates the PI3K/AKT/mTOR signaling pathway, and 
promotes tumor cell proliferation, migration, and inva-
sion [70]. Abnormal collagen deposition can also form 
a physical barrier that impedes immune cell infiltration 
and regulates the immune microenvironment.

Overexpression of P4HA2 reduces the infiltration of 
 CD8+T cells into the tumor stroma and promotes the 
recruitment of immunosuppressive cells (such as Tregs 
and M2-type macrophages), thereby inhibiting the anti-
tumor immune response [71]. A study by the team of 
Zhang Hongtao at Soochow University revealed that 
P4HA2 hydroxylates mTOR kinase, enhancing its stabil-
ity and activating the downstream PI3K/AKT/mTOR 
signaling axis, which promotes the proliferation of lung 
adenocarcinoma cells. Knockdown of P4HA2 in com-
bination with mTOR inhibitors (e.g., AZD-8055) can 
synergistically inhibit tumor growth [72]. Activation of 
the PI3K/AKT/mTOR pathway can lead to a series of 
downstream effects that promote tumor progression. For 
example, it can upregulate the expression of Cyclin D1, 
a key cell cycle regulatory protein that drives cells from 
the G1/G0 phase to the S phase, thereby promoting cell 
proliferation. Additionally, it can increase the expression 
of Survivin, an inhibitor of apoptosis protein that inhibits 
apoptosis and promotes cell survival [73].

In lung adenocarcinoma (LUAD), P4HA2 activates the 
mTOR signaling pathway by hydroxylating the key pro-
line residue P2341 in mTOR kinase, which subsequently 
affects the phosphorylation levels of S6K-T389 and AKT-
S473, both of which are crucial for tumor cell growth 
[72]. In other contexts, a study by the team of Jiang Wei 
at Fudan University found that P4HA2 hydroxylates 
SUFU, a core negative regulator of the Hedgehog signal-
ing pathway, in cancer-associated fibroblasts, promoting 
its dissociation from the KIF7 complex and thereby acti-
vating Hedgehog signaling [74]. This activation leads to 
the release of paracrine growth factors that promote the 
malignant proliferation of B-cell lymphoma cells. Knock-
out of P4HA2 significantly delays tumor growth in mouse 
lymphoma models [75]. In diffuse large B-cell lymphoma 
(DLBCL), P4HA2 hydroxylates the immune negative 
regulator Carabin, leading to its ubiquitination and deg-
radation, thereby relieving the inhibition of the Ras/
ERK pathway and promoting tumor proliferation [75]. 
Additionally, studies have shown that P4HA2 expression 
levels are closely related to the proliferation and migra-
tion capabilities of glioblastoma multiforme (GBM) cells. 
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Notably, low expression of P4HA2 in glioma stem cells 
(GSCs) is associated with prolonged patient survival, sug-
gesting that P4HA2 may act as a regulatory switch in the 
transition from GSCs to GBM cells [76].

Nonetheless, the association between P4HA2 and thy-
roid cancer remains insufficiently understood. In this 
study, we demonstrated that P4HA2 promotes malig-
nant phenotypes, such as proliferation and migration, in 
thyroid cancer by overexpressing and silencing P4HA2 
in thyroid cancer cells. Additionally, we investigated the 
potential mechanisms underlying this function through 
bioinformatics analysis. Utilizing immune infiltration 
analysis, we confirmed that anti-tumor immunity is 
significantly suppressed in thyroid cancer tissues with 
elevated P4HA2 expression, as evidenced by the down-
regulation of  CD8+T cells and M1-type macrophages, 
alongside the up-regulation of regulatory T cells (Tregs) 
and M2-type macrophages. Furthermore, GO and KEGG 
analyses revealed that high P4HA2 expression promotes 
extracellular matrix formation, thereby accelerating 
the malignant progression of thyroid cancer. In conclu-
sion, P4HA2 appears to facilitate proliferation, invasion, 
and immune evasion through mechanisms such as 
enhancing collagen deposition, producing specific col-
lagen subtypes, and interacting with the tumor immune 
microenvironment.

This study employed transcriptome sequencing data 
and bioinformatics techniques to conduct a comprehen-
sive analysis of thyroid cancer gene expression profiles, 
successfully identifying four key biomarkers: TFF3, EYA1, 
RPS6KA5, and P4HA2. Notably, the elevated expression 
of P4HA2 contributes to the malignant progression of 
thyroid cancer, a finding corroborated by experimental 
validation. P4HA2 has the potential to be a liquid biopsy 
biomarker, such as through serum or exosome detec-
tion, which could offer a non-invasive approach for early 
diagnosis and prognosis assessment. However, there are 
limitations to this study. The lack of in vivo experiments, 
such as mouse models, limits the comprehensive under-
standing of the biological functions and mechanisms of 
P4HA2 in thyroid cancer development and progression. 
Future research should focus on conducting in vivo stud-
ies to further validate the role of P4HA2 and explore its 
potential as a therapeutic target. This research provides 
novel molecular markers for the diagnosis of thyroid can-
cer and identifies new targets for its precise treatment.

Limitations
The TCGA database, despite its large sample size, may 
exhibit biases related to geographical and popula-
tion selection. Machine learning algorithms, such as 
XGBoost, LASSO, and RF,utilized for feature selection 

and model construction, can be influenced by fac-
tors like data feature distribution and parameter set-
tings. Additionally, the study lacks in vivo experimental 
validation.
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MF  Molecular functions
FNAB  Fine-needle aspiration biopsy
GBM  Glioblastoma multiforme
OSCC  Oral squamous cell carcinoma
CC  Cellular components
WHO  World Health Organization
miRNAs  MicroRNAs
circRNAs  Circular RNAs
Gal-3  Galectin-3
CK19  Cytokeratin-19
GSCs  Glioma stem cells
LUAD  Lung adenocarcinoma
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