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Abstract 

Background  Ischemic stroke (IS) is one of the most common causes of disability in adults worldwide. This study 
aimed to identify key genes related to the inflammatory response to provide insights into the mechanisms and man-
agement of IS.

Methods  Transcriptomic data for IS were downloaded from the Gene Expression Omnibus (GEO) database. Weighted 
gene co-expression network analysis (WGCNA) and differential expression analysis were used to identify inflamma-
tion-related genes (IRGs) associated with IS. Hub IRGs were screened using Lasso, SVM-RFE, and random forest algo-
rithms, and a nomogram diagnostic model was constructed. The diagnostic performance of the model was assessed 
using receiver operating characteristic (ROC) curves and calibration plots. Additionally, immune cell infiltration 
and potential small molecule drugs targeting IRGs were analyzed. The expression of IRG was verified by qRT-PCR 
in healthy controls and IS patients.

Results  Nine differentially expressed IRGs were identified in IS, including NMUR1, AHR, CD68, OSM, CDKN1A, RGS1, 
BTG2, ATP2C1, and TLR3. Machine learning algorithms selected three hub IRGs (AHR, OSM, and NMUR1). A diagnostic 
model based on these three genes showed excellent diagnostic performance for IS, with an area under the curve 
(AUC) greater than 0.9 in both the training and validation sets. Immune infiltration analysis revealed higher lev-
els of neutrophils and activated CD4 + T cells, and lower levels of CD8 + T cells, activated NK cells, and naive B cells 
in IS patients. The hub IRGs exhibited significant correlations with immune cell infiltration. Furthermore, small mol-
ecule drugs targeting hub IRGs were identified, including chrysin, piperine, genistein, and resveratrol, which have 
potential therapeutic effects for IS. qRT-PCR evaluation demonstrated that the levels of blood biomarkers (AHR, OSM, 
and NMUR1) in IS patients could serve as distinguishing indicators between IS patients and healthy controls (P < 0.05).

Conclusion  This study confirmed the significant impact of IRGs on the progression of IS and provided new diagnos-
tic and therapeutic targets for personalized treatment of IS.
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Introduction
Stroke stands as a significant global health challenge, 
being the second leading cause of death and the pri-
mary contributor to disability worldwide [1]. Every year, 
approximately 15 million individuals are affected, with 5 
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million fatalities and an equal number left with perma-
nent physical impairments [2]. Recent data indicate a ris-
ing trend in stroke incidence, with one in four individuals 
expected to experience a stroke during their lifetime [3]. 
This increase is partly attributed to an aging population 
and the accumulation of risk factors, as well as the grow-
ing prevalence of these risk factors among younger popu-
lations in developing countries [4]. Ischemic stroke (IS), 
caused by a blood vessel obstruction reducing cerebral 
blood flow, accounts for over 80% of all stroke cases [5]. 
Despite extensive research on the mechanisms of neu-
ronal injury and the development of targeted therapies, 
the clinical efficacy of such treatments remains subop-
timal [6]. Early diagnosis of IS is crucial, but it is often 
delayed due to the reliance on multiple time-consuming 
procedures, including CT scans, MRI, and angiography, 
which can hinder timely intervention [7]. Addition-
ally, current treatments, including drug and interven-
tional thrombolysis, face limitations due to a narrow 
therapeutic window and associated risks [8]. Given these 
challenges, there is an urgent need to identify novel bio-
markers with high sensitivity and specificity for early 
diagnosis. Such biomarkers could significantly reduce 
the time to diagnosis and improve patient outcomes, 
addressing the ongoing public health challenge posed by 
stroke [9, 10].

The intricate relationship between stroke and inflam-
mation has emerged as a critical area of investigation. 
Post-stroke inflammation plays a pivotal role in both 
the acute phase and long-term recovery, influencing the 
extent of tissue damage and repair processes [11]. Inflam-
mation begins almost immediately after a stroke event, 
as ischemia triggers a cascade of immune responses that 
involve both local glial cells and infiltrating leukocytes 
[12]. The activation of microglia and astrocytes, along 
with the recruitment of peripheral immune cells, leads 
to the release of various pro-inflammatory cytokines 
and chemokines, which can exacerbate tissue injury 
[13]. However, the inflammatory response also facili-
tates tissue repair and regeneration through the release 
of growth factors and other neuroprotective agents [14]. 
Despite this dual-edged sword, the precise molecular 
mechanisms underlying the inflammatory response in 
stroke remain incompletely understood. Identifying spe-
cific genes involved in this process could provide valuable 
insights into the pathophysiology of stroke and poten-
tially lead to new therapeutic targets [15]. Moreover, the 
discovery of reliable biomarkers related to the inflamma-
tory response could enable more accurate prognosis and 
personalized treatment strategies.

Weighted Gene Coexpression Network Analysis 
(WGCNA) is a powerful systems biology approach 
that constructs coexpression networks to identify gene 

modules and their relationships with biological pathways. 
This method has been widely utilized to predict altera-
tions in disease-associated signaling pathways and to 
explore biomarkers for IS and other diseases [16–18]. In 
this study, we used WGCNA and differential expression 
analysis to identify inflammation response-related genes 
(IRGs) differentially expressed in IS. To select hub IRGs, 
we applied Lasso, support vector machine analysis with 
recursive feature elimination (SVM-RFE), and random 
forest algorithms. Using these hub IRGs, we constructed 
a nomogram for diagnosing IS. This approach not only 
holds promise for improving stroke diagnostic accuracy 
but also for identifying potential therapeutic targets that 
could mitigate the inflammatory response and enhance 
patient outcomes. Our findings may contribute to a more 
comprehensive understanding of the molecular mecha-
nisms underlying stroke and pave the way for more 
effective interventions. The study’s workflow diagram is 
shown in Fig. 1.

Materials and methods
Data collection and processing
Gene expression profiles were downloaded from the 
public database Gene Expression Omnibus (GEO; 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/, accessed date: July 
1, 2024) for the datasets GSE16561 (Last update date: 
Oct 04, 2019), GSE58294 (Last update date: Mar 25, 
2019) and GSE22255 (Last update date: Mar 25, 2019). 
The GSE58294 dataset comprises 69 IS samples and 23 
healthy controls, while the GSE22255 dataset includes 
20 IS samples and 20 healthy controls. Both datasets 
were generated using the GPL570 platform (Affym-
etrix Human Genome U133 Plus 2.0 Array) and consist 
of peripheral blood samples. The GSE16561 dataset was 
generated using the GPL6883 Illumina HumanRef-8 
v3.0 expression beadchip and consists of whole blood 
obtained from 39 IS patients and 24 healthy control sub-
jects. Gene expression data were normalized using the 
limma package (version 3.60.4) [19], and batch effects 
were removed using the sva package (version 3.52.0) 
[20]. Additionally, 200 IRGs (Supplementary materials: 
Table  S1) were collected from the Molecular Signatures 
Database (MSigDB; https://​www.​gsea-​msigdb.​org/​gsea/​
msigdb, version 7.4, accessed date: July 1, 2024).

Weighted gene co‑expression network analysis
WGCNA analysis was performed on the GSE22255 
dataset using the WGCNA R package (version 1.73) 
[21] to identify candidate biomarkers or therapeutic 
targets related to IS. First, a sample clustering dendro-
gram was constructed based on cutHeight to remove 
outliers. A soft-thresholding power β was defined 
to ensure scale-free topology of the network. The 

https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb


Page 3 of 15Huang et al. European Journal of Medical Research          (2025) 30:195 	

adjacency matrix was transformed into a topological 
overlap matrix (TOM), and dynamic tree cutting was 
applied to cluster genes into distinct modules. Mod-
ules significantly associated with IS phenotype were 
selected based on their correlation.

Differential expression analysis
Differential expression analysis between IS patients 
and healthy controls was conducted using the limma 
package in R. Genes with a p-value < 0.05 and a log2 
fold change (logFC) of 0 were considered differentially 
expressed. Volcano plots were generated using the 
ggplot2 package (version 3.5.1) in R.

Enrichment analysis
The intersection of genes from the WGCNA-selected 
modules and differentially expressed genes (DEGs) 
underwent enrichment analysis for Gene Ontology 
(GO, https://​geneo​ntolo​gy.​org/, accessed date: July 1, 
2024) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG, https://​www.​kegg.​jp/, accessed date: July 1, 
2024) pathways using the clusterProfiler package (ver-
sion 4.12.6) [22]. Bar plots and dot plots were created 
to visualize the results. The GSE22255 cohort was 
divided into high and low expression groups based on 
the median expression of marker genes, and differen-
tial expression analysis was performed using limma. 
Gene set enrichment analysis (GSEA) for KEGG path-
ways was also conducted using clusterProfiler.

Feature selection
Three machine learning algorithms were employed for 
feature selection: (1) Lasso: Lasso analysis was per-
formed using the glmnet package (version 4.1–8) [23] 
with tenfold cross-validation, and features with non-
zero coefficients were selected. (2) SVM-RFE: Support 
vector machine analysis with SVM-RFE was imple-
mented using the mRFE package (version 0.0.0.9000) 
[24] with tenfold cross-validation, and features with 
the lowest error were selected. (3) Random Forest: The 
randomForest package (version 4.7–1.2) [25] was used 
for random forest analysis, and the top five features 
were selected based on importance scores. Venn dia-
grams were used to identify overlapping features, which 
were then validated for differential expression in the 
GSE58294, GSE16561, and GSE22255 cohorts.

Nomogram construction and evaluation
A nomogram was constructed using the selected fea-
tures in the GSE22255 cohort with the rms package 
(version 6.8–2). Calibration curves and receiver operat-
ing characteristic (ROC) curves were plotted to evalu-
ate the performance of the IRGs and the nomogram, 
and the area under the curve (AUC) was calculated. 
Validation of the IRGs and the nomogram was per-
formed in the GSE58294 cohort.

Immune infiltration assessment
Immune cell infiltration was assessed using the IOBR 
package (version 0.99.8) [26] and the CIBERSORT 

Fig. 1  The workflow of the study design

https://geneontology.org/
https://www.kegg.jp/
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algorithm to calculate the infiltration proportions of 
22 immune cell types. Differences in immune cell infil-
tration between IS and control groups were compared 
using the Wilcoxon test. Correlations between marker 
IRGs and immune cell infiltration were calculated, and 
a heatmap was generated using the corrplot package 
(version 0.95).

Small‑molecule drug prediction
Potential drugs targeting hub genes were identified 
using the Drug Gene Interaction Database (DGIdb, 
http://​www.​dgidb.​org, accessed date: July 4, 2024) [27]. 
The determined target network was visualized using 
Cytoscape software (version 3.10.2, usage date: July 4, 
2024).

Collection of whole blood samples
Participants were recruited from Zhejiang Provincial 
Tongde Hospital. All IS patients underwent comprehen-
sive neurological examinations. IS diagnosis was estab-
lished according to the International Classification of 
Diseases, Ninth Revision (ICD-9) criteria. Exclusion cri-
teria included histories of hematological disorders, type 1 
diabetes mellitus, autoimmune diseases, thyroid dysfunc-
tion, malignancies, or hepatic/renal pathologies. Whole 
blood samples were collected from 15 healthy controls 
and 15 IS patients using residual clinical specimens 
scheduled for routine diagnostic disposal. All samples 
were aliquoted and stored at − 80  °C until subsequent 
analysis. This study protocol adhered to the ethical prin-
ciples outlined in the Declaration of Helsinki (2008 revi-
sion) and received approval from the Institutional Review 
Board of Zhejiang Provincial Tongde Hospital (Approval 
No. 2023-106 K). Written informed consent was waived 
by the ethics committee as only anonymized residual 
specimens were utilized.

RT‑qPCR
RNAprep Pure High Efficiency Total RNA Extrac-
tion Kit (Cat no. DP443, TianGen, Beijing, China) 
was used to extract total RNA in blood serum. Briefly, 
800  ng total RNA of each sample was used to perform 
reverse transcription to synthesis the first chain cDNA 
using TAKARA PrimeScript RT reagent Kit (Cat no. 
RR037, TAKARA, Japanese). Then, SYBR green rea-
gent (TAKARA, Japanese) was used to determine the 
expression of target genes during process of amplifica-
tion. GAPDH was used as reference to determine loading 
controls, while 2-detadeta T formula was used to calcu-
late the relative expression of target genes. Primers used 
for the present study was shown as following: 5ʹ-CGT​
CCC​TGC​ATC​CCA​CTA​CTT-3ʹ (AHR forward primer), 
5ʹ - GGA​CAT​GGC​CCC​AGC​ATA​G-3’ (AHR reverse 

primer), 5’-GCA​CGG​GCC​AGA​GTA​CCA​GGAC-3’ 
(OSM forward primer), 5’-CTG​GTG​TTG​TAG​TGG​ACC​
GTGAG-3’ (OSM reverse primer), 5’-GGC​TCC​AGC​
AGC​ACG​ATC​-3’ (NMUR1 forward primer), 5’-GCA​
GAT​GCC​AAA​CAC​CAC​G-3’ (NMUR1 reverse primer), 
5’-CGG​AGT​CAA​CGG​ATT​TGG​TCG​TAT​-3’ (GAPDH 
forward primer), and 5’- AGC​CTT​CTC​CAT​GGT​GGT​
GAA​GAC​-3’ (GAPDH reverse primer).

Statistical analysis
Statistical analysis was performed using SPSS (V. 27.0; 
ICM Corp., Armonk, NY, USA.) and R software (V. 
3.6.2). Comparisons between groups were analyzed using 
unpaired t-tests, Wilcoxon test or one-way ANOVA, as 
appropriate. For all analyses, a two-sided P < 0.05 was 
considered to indicate statistical significance.

Results
Identification of significant module genes in IS via WGCNA
An unweighted scale-free co-expression network was 
established to identify key modules relevant to IS. Ini-
tially, we clustered samples from the GSE22255 dataset 
based on Euclidean distances of gene expression values to 
detect outliers; Fig. 2A shows that three outlier samples 
were identified. After removing these outliers, we re-clus-
tered the remaining samples, where white represented 
control samples and red represented IS samples (Fig. 2B). 
Subsequently, when the soft threshold (power) was set to 
6, the R^2 value reached 0.85, indicating that connectiv-
ity tended towards zero (Fig. 2C and D). Following this, 
the dynamic tree cut algorithm identified eight mod-
ules within the co-expression network (Fig.  2E). Based 
on the module-trait relationships depicted in Fig. 2F, we 
selected three modules (black, red, and turquoise) with 
correlations greater than 0.2 for further analysis. In total, 
4,467 IS-related genes were identified across these three 
modules for subsequent analyses.

Identification of differentially expressed IRGs in IS
To explore the extent of gene expression differences 
between IS and normal conditions, we identified DEGs. 
We screened 1,049 genes between the IS and control 
groups, including 564 upregulated and 485 downregu-
lated genes (Fig.  3A). Intersecting these DEGs with the 
4,467 genes identified through WGCNA resulted in 383 
IS-related DEGs. Enrichment analysis revealed that these 
genes were involved in processes such as regulation of 
translation, nuclear speckles, protein kinase activity, 
and the NF-kappa B signaling pathway (Fig.  3B and C). 
Ultimately, Venn diagram analysis indicated that nine of 
these IS-related DEGs were IRGs, which were further 
utilized for feature selection (Fig. 3D).

http://www.dgidb.org
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Identification of hub IRGS using machine learning 
algorithms
Three different machine learning algorithms were 
employed to screen for reliable candidate hub genes in 
IS. LASSO regression identified five genes—BTG anti-
proliferation factor 2 (BTG2), aryl hydrocarbon receptor 
(AHR), oncostatin M (OSM), ATPase secretory path-
way Ca2 + transporting 1 (ATP2C1), and neuromedin 
U receptor 1 (NMUR1)—as diagnostic markers for IS 
(Fig.  4A and B). Additionally, SVM-RFE selected the 
top eight feature genes with the minimum error, which 
included OSM, AHR, NMUR1, cyclin-dependent kinase 
inhibitor 1A (CDKN1A), BTG2, CD69, ATP2C1, and reg-
ulator of G protein signaling 1 (RGS1) (Fig. 4C). Random 
Forest analysis was employed to evaluate the importance 
of the differentially expressed IRGs in IS (Fig. 4D and E), 
and the top five genes identified were NMUR1, AHR, 
CD69, OSM, and CDKN1A. Finally, after overlaying 

key genes using a Venn diagram, the AHR, OSM, and 
NMUR1 were chosen as common potential hub genes in 
IS (Fig. 4F).

Expression characteristics of Hub IRGs
We further investigated the expression levels of hub IRGs 
in IS patients. In the GSE22255 cohort, AHR was sig-
nificantly upregulated, NMUR1 was significantly down-
regulated, and the expression difference of OSM was 
not significant in IS patients compared to normal con-
trols (Fig. 5A). In the GSE58294 and GSE16561 cohorts, 
OSM was significantly upregulated, NMUR1 was sig-
nificantly downregulated, and the expression difference 
of AHR was not significant (Fig. 5B and C). Correlation 
analysis showed that OSM had a negative correlation 
with NMUR1, while the correlation of AHR with other 
genes was inconsistent across all cohorts. Furthermore, 
validation analyses in clinical specimens demonstrated 

Fig. 2  Identification of Gene Modules Related to Ischemic Stroke via WGCNA. A Clustering of samples to detect outliers. B Sample dendrogram 
and trait heatmap. C, D Determination of the optimal soft-thresholding power. E Identification of modules based on the co-expression network. F 
Relevance of modules to ischemic stroke
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statistically significant elevations in AHR and OSM lev-
els, coupled with a marked reduction in NMUR1 expres-
sion within peripheral blood samples of IS patients 
compared to healthy controls (Fig. 5D–F). These findings 
substantiate the clinical relevance of these hub genes as 
potential diagnostic and prognostic biomarkers for IS 
pathogenesis.

Development and evaluation of nomogram
Using the identified feature genes (AHR, OSM, and 
NMUR1; Fig. 6A), we developed a diagnostic nomogram 
for ischemic stroke and assessed its predictive ability 

using calibration curves. The calibration curves demon-
strated minimal differences between actual and predicted 
risks of ischemic stroke, indicating excellent accuracy 
of the diagnostic nomogram (Fig. 6B). In the GSE22255 
cohort, we performed ROC analyses to evaluate the 
predictive performance of the nomogram and the gene 
expressions of AHR, OSM, and NMUR1 for IS risk. The 
results showed that the AUCs were 0.906 for the nomo-
gram (Fig. 6C), 0.705 for AHR (Fig. 6D), 0.398 for OSM 
(Fig. 6E), and 0.734 for NMUR1 (Fig. 6F), respectively. In 
the GSE58294 cohort, the corresponding AUC values for 
predicting IS risk were 0.944 for the nomogram (Fig. 6G), 

Fig. 3  Selection of Differentially Expressed IRGs Related to Ischemic Stroke. A Volcano plot illustrating the distribution of differentially expressed 
genes (DEGs) between the ischemic stroke and control groups. B Gene Ontology (GO) annotation of DEGs related to ischemic stroke. C Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs related to ischemic stroke. D Venn diagram identifying 
overlapping genes among DEGs, IRGs, and WGCNA module genes
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0.563 for AHR (Fig.  6H), 0.903 for OSM (Fig.  6I), and 
0.834 for NMUR1 (Fig. 6J). These findings suggested that 
the nomogram demonstrated high precision in predicting 
IS risk, whereas the gene expressions of AHR, OSM, and 
NMUR1 exhibit inconsistent accuracy in this context.

Association of IRGs with IS immune infiltration
We further evaluated immune cell infiltration in IS 
patients and found that, compared to controls, IS patients 
had lower naive B cell, CD8 T cell, resting CD4 mem-
ory T cell, and activated NK cell infiltration, but higher 
plasma cell, activated CD4 memory T cell, resting NK 
cell, and neutrophil infiltration (Fig. 7A). Further analy-
sis revealed that CD8 T cells had a significant negative 
correlation with AHR, OSM, and NMUR1. Additionally, 

the IRGs exhibited complex and diverse significant cor-
relations with naive B cells, CD4 T cells, NK cells, mono-
cytes, macrophages, dendritic cells, and neutrophils 
(Fig. 7B). These findings suggest that IRGs play a role in 
the formation and development of the immune microen-
vironment in IS patients.

Screening of small molecule drugs
For the treatment of IS patients, we used DGIdb to iden-
tify 76 potential drugs (Fig.  8), including 16 approved 
and 60 not approved (purple edges). Approved drugs 
included chrysin, methylcellulose, piperine, genistein, 
resveratrol, clioquinol, carbaryl, levothyroxine, niclosa-
mide, phenazopyridine hydrochloride, tapinarof, nita-
zoxanide, thiabendazole, romiplostim, olanzapine, and 

Fig. 4  Identification of Hub IRGs Using Machine Learning Algorithms. A Trajectory of independent variables in LASSO regression. B Confidence 
intervals at different lambda values in LASSO regression. C SVM-RFE algorithm for feature gene selection. D Error rate in the ischemic stroke 
and control groups using the random forest algorithm. E Genes ranked based on importance scores from the random forest algorithm. F Venn 
diagram showing the feature genes shared by LASSO, SVM-RFE, and random forest algorithms

(See figure on next page.)
Fig. 5  Validation of Expression Differences for Hub IRGs. A Boxplot and correlation analysis of hub IRGs in the GSE22255 cohort. B Boxplot 
and correlation analysis of hub IRGs in the GSE58294 cohort. C Boxplot and correlation analysis of hub IRGs in the GSE16561 cohort. D Comparison 
of AHR mRNA levels in blood samples from IS patients and healthy controls, as determined by qRT-PCR. E Comparison of OSM mRNA levels in blood 
samples from IS patients and healthy controls, as determined by qRT-PCR. Comparison of NMUR1 mRNA levels in blood samples from IS patients 
and healthy controls, as determined by qRT-PCR. *ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001



Page 8 of 15Huang et al. European Journal of Medical Research          (2025) 30:195 

Fig. 5  (See legend on previous page.)
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omeprazole. A drug-gene network was constructed using 
Cytoscape, where all approved drugs targeted AHR, but 
there were no drugs targeting NMUR1 and OSM.

Pathways associated with hub IRGs
We analyzed the potential mechanisms of action of hub 
IRGs in IS using GSEA. It was found that genes in the 
high-expression cohorts of AHR, OSM, and NMUR1 
were highly enriched in the ribosome pathway. In the 
high-expression cohort of AHR, genes were enriched 
in the C-type lectin receptor signaling pathway and the 
Fanconi anemia pathway, whereas in the low-expres-
sion cohort, genes were enriched in the TNF signaling 

pathway and thyroid hormone synthesis, secretion, and 
action (Fig. 9A). Genes in the high-expression cohort of 
OSM were enriched in the AGE-RAGE signaling path-
way, aminoacyl-tRNA biosynthesis, and the C-type 
lectin receptor signaling pathway, while genes in the low-
expression cohort were mainly enriched in the IL-17 and 
PPAR signaling pathways (Fig.  9B). Genes in the high-
expression cohort of NMUR1 were primarily enriched in 
antigen processing and presentation, glycosaminoglycan 
biosynthesis, and natural killer-mediated cytotoxicity 
pathways, whereas genes in the low-expression cohort 
were primarily enriched in T cell receptor and VEGF 
signaling pathways (Fig. 9C).

Fig. 6  Development and Evaluation of the Nomogram. A Nomogram for the diagnostic model of ischemic stroke. B Calibration curves to evaluate 
the predictive accuracy of the nomogram. C Receiver operating characteristic (ROC) curves for the nomogram in the GSE22255 cohort. D ROC 
curves for the AHR in the GSE58294 cohort. E ROC curves for the OSM in the GSE58294 cohort. ROC curves for the NMUR1 in the GSE58294 
cohort. G ROC curves for the nomogram in the GSE58294 cohort. H ROC curves for the AHR in the GSE58294 cohort. I ROC curves for the OSM 
in the GSE58294 cohort. ROC curves for the NMUR1 in the GSE58294 cohort
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Fig. 7  Analysis of Immune Cell Infiltration. A Comparison of immune cell infiltration differences between ischemic stroke and control groups. 
B Heatmap showing the correlations between hub IRGs and immune cell infiltration. *ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001

Fig. 8  Drug-Gene Networks Constructed by Cytoscape. Blue nodes represent hub genes, and green nodes represent targeted drugs. Green edges 
indicate approved drugs, and purple edges indicate drugs that are not approved
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Discussion
Inflammation plays a crucial role in the pathogenesis 
and progression of IS [28]. Ischemia-induced cell death 
releases cellular contents that can activate the immune 
system, triggering the production of local inflamma-
tory mediators such as cytokines, chemokines, and free 
radicals, which exacerbate brain tissue damage, includ-
ing disruption of the blood–brain barrier and thrombo-
sis [29, 30]. WGCNA identified a series of modules and 
genes related to IS, including 70 IRGs, which constitute 
one-third of all IRGs, further confirming the critical role 

of inflammation-related genes in the formation and pro-
gression of IS. In this study, we leveraged the comple-
mentary strengths of three machine learning algorithms 
to screen IRG features for constructing a nomogram 
diagnostic model for IS and identified three hub IRGs 
(AHR, OSM, NMUR1). The model demonstrated excel-
lent performance in both the training and validation sets, 
suggesting potential clinical utility.

The AHR gene encodes the aryl hydrocarbon receptor, 
a ligand-activated transcription factor initially recognized 
for its binding capacity to environmental pollutants such 

Fig. 9  GSEA Results Related to the Function of Hub Genes. A GSEA results for AHR. B GSEA results for OSM. C GSEA results for NMUR1
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as polychlorinated biphenyls (PCBs) and dioxins. Beyond 
its role in environmental toxicology, increasing evidence 
indicates that AhR is also involved in immune system 
regulation and inflammatory processes. Activation of 
AhR regulates immune cell functions and influences 
inflammation-related signaling pathways, playing a key 
role in maintaining immunological homeostasis and con-
trolling inflammatory responses [31]. Rzemieniec et  al. 
found in a rat model of perinatal asphyxia that the AHR 
signaling pathway mediates the neuroprotective effects of 
3,3’-diindolylmethane, suggesting that compounds capa-
ble of inhibiting AHR signaling are promising therapeutic 
tools for stroke prevention [32]. Additionally, AHR has 
been shown to regulate nuclear factor kappa B (NF-κB) 
signaling activation through tumor necrosis factor recep-
tor-associated factor-6 (TRAF6), thereby modulating 
inflammatory responses [33]. Furthermore, it can protect 
neurons from ischemia–reperfusion injury by regulating 
toll-like receptor 4 (TLR4)-mediated inflammation [34].

OSM is a pleiotropic cytokine involved in various 
inflammatory responses, such as wound healing, liver 
regeneration, and bone remodeling. As a member of the 
IL-6 cytokine family, OSM binds to the shared receptor 
gp130, recruits OSMRβ or LIFRβ, and activates multiple 
signaling pathways, including JAK/STAT, MAPK, JNK, 
and PI3K/AKT [35]. Recent studies have found elevated 
serum OSM expression in IS patients, which correlates 
with stroke severity and serves as an independent pre-
dictor of poor prognosis in ischemic stroke patients. 
Moreover, OSM is significantly associated with several 
risk factors for acute IS, including age, low-density lipo-
protein, non-high-density lipoprotein, prothrombin time, 
and systolic blood pressure [36–40]. Bone marrow mes-
enchymal stem cells (BMSCs) have regenerative potential 
in brain injury, and OSM is highly expressed in the brains 
of middle cerebral artery occlusion (MCAO) stroke rats, 
upregulating SDF-1 and promoting BMSC migration, 
suggesting that OSM combined with BMSC therapy 
can improve BMSC transplantation efficiency and neu-
rological recovery [41]. Additionally, reduced neuronal 
expression of OSMRβ leads to worse stroke outcomes, 
while overexpression of OSMRβ in neurons has neuro-
protective effects. OSM exerts neuroprotective effects by 
recruiting OSMRβ and activating the JAK2/STAT3 pro-
survival signaling pathway. These data support the notion 
that human OSM may represent a promising candidate 
for stroke therapy [42].

NMUR1 is the receptor for the neuropeptide NMU, 
and NMU-NMUR1 signaling regulates inflammatory 
responses [43]. In the brain tissue of ischemic stroke 
patients and focal ischemic mice, innate lymphoid cells 
type 2 (ILC2s) accumulate in the peri-infarct region. 
Adoptive transfer and expansion of ILC2s reduce infarct 

size. Importantly, infiltrating ILC2s produce IL-4, reduc-
ing the severity of stroke damage [44]. Studies have 
shown that ILC2s specifically express NMUR1 in inflam-
matory environments, mediating the activation of ILC2s 
by neuromedin U (NMU). Loss of NMU-NMUR1 sign-
aling reduces ILC2 frequency and effector function [45]. 
Therefore, further investigation of NMUR1-mediated 
ILC2 activation in IS is warranted.

The complex relationship between IRG gene expression 
and immune cell infiltration may be a critical mechanism 
underlying their involvement in IS. Blood-derived neu-
trophils and neutrophil extracellular traps (NETs) are 
observed in the brains of ischemic stroke patients and 
corresponding animal models [46, 47], with NETs impair-
ing vascular remodeling [48]. Post-ischemia, neutrophils 
rapidly migrate to the damaged brain area, releasing 
reactive oxygen species and proteases that can disrupt 
the vascular endothelium and surrounding tissues. Cor-
relation analysis reveals a significant positive association 
between OSM expression and neutrophil infiltration, 
suggesting its potential role in influencing IS outcomes 
via neutrophils. Neutrophils are a major source of OSM, 
and most OSM + neutrophils express arginase 1, indicat-
ing an N2 phenotype that plays a crucial role in repair 
processes and inflammation resolution [49–51]. How-
ever, these findings contradict the clinical significance 
of OSM in IS. Additionally, CD8 + , CD4 + , and NK cells 
have been implicated in IS [52–54], and given the corre-
lations between IRGs and these cells, they may modulate 
the immune response in IS.

Through database searches, we identified a series of 
drugs targeting hub IRGs that may have potential thera-
peutic efficacy for IS. Chrysin has been shown to reduce 
brain edema after ischemic stroke [55]. It can also reduce 
the expression of pro-inflammatory cytokines (TNF-α 
and IL-10), decrease pro-apoptotic (Bax) and increase 
anti-apoptotic (Bcl2) proteins, further alleviating post-
ischemic injury, exerting neuroprotective effects [55, 56]. 
Piperine, a primary active component isolated from Piper 
nigrum L., improves brain injury in ischemic stroke rats 
by modulating the PI3K/AKT/mTOR pathway [57]. Clin-
ical studies show that supplementation with curcumin-
piperine improves carotid intima-media thickness, serum 
hs-CRP, total cholesterol, triglycerides, total antioxidant 
capacity, as well as systolic and diastolic blood pressure 
in patients during the rehabilitation phase of IS [58]. 
Additionally, genistein [59] and resveratrol [60] have 
been shown to benefit brain damage induced by ischemic 
stroke.

Future clinical translation will require the establish-
ment of a multi-omics biomarker scoring system, such 
as integrating AHR activity, OSM serum concentrations, 
and NMUR1 expression profiles for the construction of 
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prognostic models. At the therapeutic level, cross-path-
way synergistic interventions could be explored, such 
as using AHR inhibitors to control early inflammatory 
storms, OSM-enhanced BMSC transplantation to pro-
mote tissue repair, combined with NMUR1 agonists 
to modulate the immune microenvironment, thereby 
forming a temporally precise combination therapy regi-
men. Furthermore, the development of portable detec-
tion devices for rapid quantification of these biomarkers 
would facilitate optimized treatment decision-making in 
emergency settings.

While this study provides valuable insights, it is impor-
tant to acknowledge several limitations. Firstly, the 
retrospective nature of the data derived from publicly 
available databases may limit the representativeness and 
comprehensiveness of the findings, necessitating further 
large-scale prospective studies to validate their reliability 
and applicability. Secondly, while the biomarkers identi-
fied in this study were validated in multiple retrospective 
cohorts, clinical samples and animal models are required 
to confirm their clinical relevance.

Conclusion
In summary, this study systematically analyzed IRGs 
associated with IS and identified hub IRGs to construct 
a nomogram for precise diagnosis of IS. By evaluating 
the relationship between IRGs and immune cell infiltra-
tion in IS, we provide a novel perspective that may aid in 
the identification of potential therapeutic targets. This 
work contributes to advancing treatment strategies for 
cerebrovascular diseases by offering new insights into 
the molecular mechanisms underlying IS and suggesting 
potential drug candidates for targeted therapies.
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