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Abstract 

Current TB treatment regimens are hindered by drug resistance, numerous adverse effects, and long treatment dura-
tions, highlighting the need for ‘me-better’ treatment regimens. Host-directed therapy (HDT) has gained recognition 
as a promising approach in TB treatment. It allows the repurposing of existing drugs approved for other conditions 
and aims to enhance the effectiveness of existing anti-TB therapies, minimize drug resistance, decrease treatment 
duration, and adverse effects. By modulating the host immune response, HDT ameliorates immunopathological dam-
age and improves overall outcomes by promoting autophagy, antimicrobial peptide production, and other mecha-
nisms. It holds promise for addressing the challenges posed by multiple and extensively drug-resistant Mycobacterium 
tuberculosis strains, which are increasingly difficult to treat using conventional therapies. This article reviews various 
HDT candidates, including repurposed drugs, explores their underlying mechanisms such as autophagy promotion 
and inflammation reduction, while emphasizing their potential to improve TB treatment outcomes and outlining 
future research directions.
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Introduction
Tuberculosis (TB) is a chronic infectious disease caused 
by Mycobacterium tuberculosis (M.tb) and is the second 
leading cause of death from infectious diseases world-
wide, following coronavirus disease 2019. TB remains 
a global public health issue, posing a serious threat to 
human health. The World Health Organization 2022 
report estimates 10.6 million new cases of TB and 1.6 
million associated deaths [1]. Currently, the main treat-
ment regimen for TB involves a multidrug chemotherapy 
administered for at least six months. However, this regi-
men often involves prolonged courses of multiple anti-
biotics, which can lead to poor patient compliance, the 

emergence of multidrug-resistant TB (MDR-TB), and 
adverse reactions [2]. Therefore, there is a pressing need 
to explore alternative therapeutic approaches.

Host immune response is critical to the pathogenesis of 
TB. As a novel therapeutic approach, host-directed ther-
apy (HDT) has gained attention as an avenue for improv-
ing treatment outcomes of drug-resistant TB and is being 
increasingly explored as an adjunct TB treatment [3]. By 
focusing on the intricate interactions between M.tb and 
host immune cells, HDT exploits these metabolic rela-
tionships to bolster protective mechanisms against the 
pathogen. During TB infection, HDT modulates host 
cell functions, enhances protective immune responses, 
and improves the mycobacterial killing activities of host 
immune cells, working to eradicate or limit TB infection 
[4, 5]. Conversely, HDT also balances immune reactiv-
ity by reducing exacerbated inflammation and tissue 
damage associated with TB infection through precise 
regulation of the host immune system [6]. This approach 
eliminates M.tb through mechanisms that bypass the 
pathways commonly targeted by conventional anti-TB 
drugs, thereby reducing the risk of developing antibiotic 
resistance [5, 7]. This is particularly beneficial given the 

†Na Tian and Hongqian Chu have contributed equally to this work.

*Correspondence:
Naihui Chu
dongchu1994@sina.com
Zhaogang Sun
sunzhaogang@bjxkyy.cn
1 Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor 
Research Institute, Beijing 101149, China
2 Translational Medicine Center, Beijing Chest Hospital, Capital Medical 
University, Beijing 101149, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40001-025-02443-4&domain=pdf


Page 2 of 18Tian et al. European Journal of Medical Research          (2025) 30:267 

rise of multidrug-resistant (MDR) and extensively drug-
resistant (XDR) tuberculosis strains. This review focuses 
on a few drug candidates for HDT from two different 
perspectives: decreasing bacterial burden and mitigat-
ing pathological inflammatory responses (Fig.  1). Some 
of these drugs have been approved for the treatment of 
other diseases, such as simvastatin, everolimus, gefitinib 
and so on. In conducting our literature search, we aimed 
to comprehensively cover all significant HDT approaches 
for TB that have been reported over the years. While our 
search was not restricted to a specific time window, we 
focused on identifying key studies and advancements 
that have shaped the development of HDTs for TB. How-
ever, given the vast and evolving nature of the field, it is 
possible that some studies may not have been included. 
To ensure a thorough review, we utilized multiple data-
bases, including PubMed, Scopus, and Web of Science, 
and employed broad search terms related to HDTs and 
TB. This approach allowed us to capture a wide range of 
studies, from early foundational work to recent clinical 
trials, providing a balanced overview of the field.

In addition, we have provided a partial list of these 
promising HDT agents and their targets of action 
(Table 1).

Promising candidates that decrease TB burden
Statins
Statins, specifically simvastatin and rosuvastatin, are 
widely used to lower circulating cholesterol levels and 
prevent coronary heart disease. These drugs exhibit 
anti-inflammatory and immunoregulatory properties 
while promoting cell autophagy and phagosome matu-
ration by inhibiting the mammalian target of the rapa-
mycin (mTOR) signaling pathway [8]. Autophagy, an 

intracellular process that catabolizes intracellular com-
ponents through lysosomal degradation, plays a crucial 
role in the host defense against intracellular pathogens 
like M.tb [57] (Fig.  2). Macrophages are key immune 
cells that inhibit M.tb growth via autophagy and facili-
tate the presentation of antigens to other immune cells.

Preclinical studies in in vitro models have shown that 
simvastatin exerted its anti-tubercular activity through 
cholesterol-driven autophagy, which is mediated by the 
adenosine monophosphate-activated protein kinase 
(AMPK)–mammalian target of the rapamycin complex 
1 (mTORC1)–TFEB axis [58] (Fig. 3). In human periph-
eral blood mononuclear cells (PBMCs), simvastatin sig-
nificantly reduced M.tb growth and promoted apoptosis 
and autophagy [59]. Furthermore, statins like simvasta-
tin, fluvastatin, and pravastatin improved the efficacy 
of anti-TB drugs in cell models. In animal models, 
pravastatin demonstrated strong adjuvant action in a 
mouse model of human-like necrotic TB lung granulo-
mas [60]. These preclinical findings suggest that statins 
have potential as adjunctive therapies in TB treatment. 
In contrast, clinical trials have yielded mixed results. 
A phase IIA study of atorvastatin showed a signifi-
cant reduction in mycobacterial load in the sputum of 
patients with pulmonary tuberculosis (PTB) [61], while 
another trial using rosuvastatin did not affect sputum 
culture conversion [62]. These results suggested that 
not all statins are equally effective in clinical settings, 
and further research into optimal dosing and specific 
statin classes is warranted.

Macrocyclic lactone
Rapamycin, a macrocyclic lactone isolated from Strep-
tomyces hygroscopicus, is known for its immuno-
suppressive and antimicrobial properties due to its 

Fig. 1 Main current HDTs used in tuberculosis
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ability to inhibit the mTOR pathway, thereby promot-
ing autophagy [63]. Specifically, rapamycin binds to 
FKBP12, forming a complex that inhibits mTORC1 
activity. This inhibition relieves the suppression of 
ULK1, a key initiator of autophagy, leading to the 

formation of autophagosomes [64]. Preclinical stud-
ies in M.tb-infected mice have shown that rapamycin 
reduced pulmonary inflammation and caseating gran-
ulomas [65]. However, its application in clinical set-
tings is restricted by high variability in absorption and 

Table 1 Emerging HDTs against TB

Therapeutic class Candidates Target References

Statins Simvastatin Autophagy [8]

Macrocyclic lactone Everolimus Inhibiting the mTOR pathway;
Autophagy

[9]

Tyrosine kinase inhibitor Gefitinib Tyrosine-kinase inhibitors (TKI);
Autophagy

[10, 11]

Synthetic opioids Loperamide Autophagy;
LL37 expression

[12, 13]

Janus kinase (JAK) blocker Tofacitinib JAK blocker [14]

Central nervous system (CNS) drugs Fluoxetine Selective serotonin reuptake inhibitor (SSRI) [15]

Vitamin Vitamin D LL37 expression;
Autophagy;
Macrophage polarization

[16–18]

Antiparasitic drug Nitazoxanide (NTZ) Autophagy [19–21]

Efflux pump inhibitors (EPIs) Verapamil EPI [22]

Glycolysis inhibitors 2-deoxyglucose (2-DG) Glucose uptake inhibitor [23]

Transglutaminase 2 (TG2) inhibitors Cystamine and cysteamine Reducing agents [24]

Miscellaneous drugs Auranofin Thioredoxin reductase (TrxR) inhibition [25]

Glutathione (GSH) Th1 response regulation [26]

Mucolytic drug Ambroxol Autophagy [27]

Therapeutic target Nuclear receptor corepressor 1 (NCOR1) Autophagy [28]

Host transcriptional repressor protein zinc 
finger and BTB domain 25(ZBTB25)

Autophagy [29]

Isocitrate lyase (ICL) inhibitors Itaconate ICL inhibitor [30–32]

Phosphodiesterase inhibitors (PDE-Is) Sildenafil PDE-I [33, 34]

CC-11050 PDE-I [35]

Glutamine metabolism antagonist JHU083 Glutamine metabolism antagonist [36]

Anticancer drugs Bevacizumab (Avastin) Anti-vascular endothelial growth factor 
(VEGF) antibody

[37]

Hypoglycemic Metformin Adenosine monophosphate–activated 
protein kinase (AMPK) activation;
Autophagy

[38–40]

Nonsteroidal anti‐inflammatory drug 
(NSAID)

Aspirin Cyclooxygenase enzymes inhibitor [41]

Ibuprofen Cyclooxygenase enzymes inhibitor [42, 43]

Indomethacin Cyclooxygenase enzymes inhibitor [44]

Miscellaneous drugs Doxycycline Matrix metalloproteinase (MMP) inhibitor [45, 46]

Resveratrol Sirtuin (Sirt1) activation [47, 48]

Thalidomide TNF-α inhibition [49]

EPA/DHA Inflammation regulation [50–52]

Therapeutic target Nuclear receptor subfamily 1, group D 
member 1 (NR1D1)

Phagosome lysosome maturation [53]

Peroxisome proliferator-activated receptor 
α (PPAR-α)

Autophagy [54]

Nuclear receptor estrogen-related receptor 
α (ERRα)

Autophagy [55]

IL-1 receptor antagonist (IL-1Ra) Blocking signaling [56]
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adverse reactions. Rapamycin’s efficacy is further lim-
ited due to its metabolism via cytochrome P450 3A4 
(Cyp3A4), which is induced by rifampin, complicating 
its use alongside standard TB treatments.

Everolimus, a derivative of rapamycin with better 
pharmacokinetics, has shown promising results in pre-
clinical studies. At the cellular level, everolimus has 
been demonstrated to enhance autophagy by inhibiting 
PI3K/Akt/mTOR pathway. In in  vitro granuloma mod-
els, everolimus not only controlled M.tb growth but also 
demonstrated an additive effect when combined with 
front-line anti-TB drugs like isoniazid and pyrazinamide. 

It modulates cytokine profiles and oxidative stress, fur-
ther supporting its role in HDT [66]. Moving to clinical 
outcomes, a phase II trial investigating everolimus as an 
adjunctive therapy for TB showed that it was well toler-
ated and might enhance recovery of lung function, par-
ticularly in terms of  FEV1 [67]. While everolimus has 
shown promise in modulating the immune response and 
improving TB treatment outcomes, there are significant 
concerns about long-term use due to its immunosup-
pressive effects. Further research should assess the bal-
ance between its potential benefits and risks, particularly 
in patients with concurrent infections or immunocom-
promised states.

Tyrosine kinase inhibitor (TKI)
Imatinib, a TKI known for its antitumor activity, has 
shown promise in interfering with the entry and sur-
vival of M.tb in macrophages. Preclinical studies in M.tb-
infected mice have demonstrated that imatinib decreased 
granulomatous lesions and bacterial load. It also dem-
onstrated efficacy against antibiotic-resistant strains by 
promoting autophagy, potentially contributing to M.tb 
clearance and reducing the risk of drug-resistant diseases 
[68]. Another TKI, gefitinib (ZD1839, Iressa), which tar-
gets the epidermal growth factor receptor (EGFR), has 

Fig. 2 Schematic representation of the correlation between autophagy induction and the anti-tuberculosis activity of indicated cytokines 
and pharmacological agents

Fig. 3 Statins and M.tb infection exhibit opposing effects on AMPK, 
mTORC1, and autophagy. Statins suppress mTORC1 activity 
while activating AMPK, both of which cause enhanced nuclear 
translocation of TFEB, resulting in the expression of autophagy-related 
genes. M.tb produces opposite effects by activating mTORC1 
and blocking AMPK, which prevents nuclear translocation of TFEB 
and inhibits autophagy
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been shown to restrict M.tb replication in both mac-
rophages as well as in the lungs of M.tb-infected mice by 
promoting the host autophagy pathway through the inhi-
bition of the p38 MAPK signaling pathway activated by 
EGFR [10]. Additionally, gefitinib has also been shown 
to control M.tb growth in macrophages by enhancing 
lysosomal biogenesis and function through the inhibition 
of the signal transducer and activator of transcription 3 
(STAT3) signaling pathway [11]. However, further clinical 
trials are necessary to evaluate the safety and efficacy of 
TKI as adjunctive therapies in TB treatment, with a focus 
on understanding how TKI might be safely integrated 
into clinical practice.

Synthetic opioids
Loperamide, a synthetic opioid routinely prescribed to 
treat diarrhea, demonstrates potential antimicrobial 
effects against M.tb. Preclinical studies in murine and 
human alveolar macrophages (AMs) have demonstrated 
that loperamide induced autophagy, enhancing its anti-
microbial activity towards M.tb [12]. In addition, lopera-
mide was found to reduce TNF-α levels and induce the 
production of antimicrobial peptides, such as bacteri-
cidal/permeability increasing protein and LL37, enhanc-
ing host’s ability to fight against M.tb infections while 
protecting tissues from excessive inflammatory damage 
[13]. However, as an opioid, loperamide has potential side 
effects, including the risk of opioid dependence and gas-
trointestinal disturbances. Further clinical trials are nec-
essary to determine the appropriate dosage, efficacy, and 
safety of loperamide in patients with PTB. Additionally, 
studies should explore whether loperamide’s immune-
modulating effects can be harnessed without inducing 
opioid-related side effects.

Janus kinase (JAK) blocker
Tofacitinib, a JAK blocker, accelerated bacterial elimi-
nation in a preclinical study when administered at high 
doses alongside standard TB chemotherapy in chronic 
M.tb-infected BALB/c mice. However, similar results 
were not observed in M.tb-infected C3HeB/FeJ mice 
with Ipr1 gene mutations. This difference may be attrib-
uted to the necrotic and hypoxic granulomatous lesions 
in C3HeB/FeJ mice, which could hinder the action of 
tofacitinib. These findings highlighted the importance 
of host factors such as granuloma structure and immune 
environment in determining the efficacy of JAK blockers 
[14]. However, the potential immunosuppressive effects 
of JAK inhibitors also pose challenges, particularly in 
immunocompromised individuals or those with concur-
rent infections. Further studies are warranted to investi-
gate its effectiveness as an adjuvant treatment during the 

early stages of infection (approximately 3 weeks), prior to 
the onset of pathological necrosis.

Central nervous system (CNS) drugs
Dopamine and serotonin receptors mediate the immune 
responses to TB. Preclinical studies have shown that 
agonists or antagonists of these receptors activated 
autophagy, thereby enhancing the host’s ability to elimi-
nate M.tb. For example, the combination of fluoxetine 
(a 5-HT2C receptor antagonist) and bromocriptine 
(an agonist of type 2 dopamine receptors) was found to 
increase the release of proinflammatory cytokine (IL-6 
and TNF-α) and stimulate autophagy in M.tb-infected 
macrophages [10, 15]. A synthetic fluoxetine analog 
(AM3e) also exhibited anti-TB efficacy against H37Rv 
strain [69]. While CNS drugs like sertraline (SRT) have 
shown promise in animal models, where their combi-
nation with front-line anti-TB drugs, improved early 
bactericidal activity, resolution of pulmonary pathol-
ogy, and enhanced survival in mice infected with M.tb 
[70], clinical studies have raised concerns. For instance, 
a recent clinical trial on SRT as an adjunct regimen for 
asymptomatic cryptococcal antigenemia reported serious 
adverse events (psychosis, aggressive behavioral changes, 
and serotonin syndrome) [71]. Although CNS drugs may 
enhance TB treatment through immune modulation, 
their use as adjunctive therapies must be approached 
cautiously due to the risk of severe side effects. Further 
studies are necessary to determine the optimal dosage 
and treatment duration to ensure patient safety.

Vitamins
Vitamin D, a fat-soluble secosteroid hormone, plays a key 
role in combating M.tb by impairing bacterial growth and 
upregulating innate host responses [72]. Its active form, 
1,25(OH)2D, regulates mucosal immunity, host defense, 
and inflammation by binding to the vitamin D receptor 
(VDR) in macrophages [73, 74], triggering the expres-
sion of the antimicrobial peptide cathelicidin (CAMP) 
(LL-37) and promoting autophagosome–lysosome fusion 
and maturation [16, 75]. Preclinical evidence shows that 
1,25(OH)2D induces a shift from inflammatory (M1) to 
reparative (M2) macrophages, promoting the secretion 
of hydrogen peroxide, a critical factor for M.tb clear-
ance [17, 18]. Clinical trials showed that cholecalciferol 
(vitamin D) supplementation, especially in patients with 
TB having 1,25(OH)2D deficiency, may augment stand-
ard anti-TB therapy (ATT) by accelerating sputum cul-
ture conversion and improving lesion absorption [7, 76]. 
However, other studies have reported mixed results, with 
some trials showing no significant impact on TB relapse 
or culture conversion [77, 78]. These findings underscore 
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the need for larger multicenter trials to fully assess the 
clinical utility of vitamin D as an adjunct therapy for TB.

Nitazoxanide (NTZ)
Nitazoxanide, an antiparasitic drug with notable antivi-
ral and anti-inflammatory properties [79]. In preclinical 
studies, NTZ suppresses intracellular M.tb proliferation 
by inhibiting the enzymatic activity of human quinone 
oxidoreductase (NQO1), which in turn inhibits the 
mTORC1 pathway and induces autophagy [19]. In  vivo 
studies demonstrated that NTZ, when combined with 
INH and rifabutin (RFB), successfully cleared all bac-
teria from the lungs and spleens of M.tb-infected mice 
and significantly restored tissue architecture[21]. How-
ever, a phase II clinical trial revealed that NTZ did not 
exhibit bactericidal activity against M.tb in drug-sus-
ceptible patients with PTB. This lack of efficacy may be 
attributed to the low plasma and sputum concentrations 
of NTZ and the high plasma protein binding of tizoxa-
nide, the active metabolite of NTZ [80], highlighting the 
need for further pharmacokinetic optimization and clini-
cal research to better understand its potential role in TB 
treatment.

Efflux pump inhibitors (EPIs)
Verapamil, a calcium channel blocker used to treat 
hypertension, angina, and cardiac arrhythmia [81], has 
been identified as an EPI with potential application in 
TB therapy. Firstly, verapamil inhibits drug efflux pumps 
in M.tb, such as Rv1258c and Rv2686c, thereby increas-
ing the intracellular concentration of anti-TB drugs like 
rifampicin and isoniazid. This not only enhances drug 
efficacy but also reduces the likelihood of drug resist-
ance [82]. Secondly, Verapamil modulates host immune 
responses by promoting macrophage activation and 
increasing the production of reactive oxygen species 
(ROS) and nitric oxide (NO), which contribute to the 
killing of intracellular mycobacteria [83]. Additionally, 
Verapamil has been shown to reduce bacterial persis-
tence, a major challenge in TB treatment, by enhancing 
drug accumulation and immune-mediated clearance 
[84]. In vitro studies demonstrated that verapamil, when 
combined with rifapentine, enhanced antimicrobial 
activity against M.tb in macrophages [85]. Animal mod-
els showed that verapamil accelerated bactericidal activ-
ity and achieved durable sterilization in infected mice 
[86]. However, verapamil’s dual effects on drug metabo-
lism, particularly its inhibition of CYP3A activity, raise 
concerns about potential interactions with essential TB 
drugs like rifampin, which is known to induce CYP3A 
enzymes [87]. Therefore, further clinical investigations 
are needed to determine the impact of verapamil on 

cardiac conduction, drug metabolism, and its potential 
as an adjunctive therapy for TB before regulatory agency 
clearance.

Glycolysis inhibitors
The Warburg effect, initially observed in cancer cells, 
refers to a metabolic state in which cells favor aerobic 
glycolysis over oxidative phosphorylation for ATP and 
macromolecule production. This phenomenon has also 
been observed in the immune cells during M. marinum 
infection. Preclinical studies demonstrated that pretreat-
ment with 2-deoxyglucose (2-DG) induced autophagy 
and restricted the growth of M. marinum in zebrafish 
larvae, potentially enhancing host defenses against myco-
bacterial infections. However, post-infection treatment 
with 2-DG failed to inhibit bacterial replication and even 
promoted M. marinum growth in TNF-α−/− zebrafish 
[23]. This was consistent with another study showing that 
2-DG treatment of M.tb-infected macrophages enhanced 
M.tb growth [88]. While clinical studies have established 
that 2-DG can be safely administered to humans [89], 
its potential application in TB treatment is limited, par-
ticularly due to its effectiveness only when administered 
before infection. The potential of glycolysis inhibitors in 
post-infection TB therapy warrants further investigation, 
but current evidence suggests significant challenges in 
their use as therapeutic agents.

Transglutaminase 2 (TG2) inhibitors
Cystamine and cysteamine, as TG2 inhibitors, function 
as reducing agents that elevate the levels of glutathione 
and L-cysteine [90], thereby impacting cell metabo-
lism. Preclinical studies demonstrated that these agents 
restricted M.tb growth in macrophages and suppressed 
host cell autophagy but did not exhibit direct bactericidal 
activity against M.tb cultures. In  vitro models indicated 
that combining TG2 inhibitors with amikacin enhanced 
their antimicrobial activity in M.tb-infected macrophages 
and the granuloma-like structure ex  vivo model [24]. 
These results showed that their combination with exist-
ing antibiotics like amikacin may offer potential, but clin-
ical trials are essential to validate their efficacy and safety 
in TB patients.

Miscellaneous drugs
Auranofin
Auranofin, an orally administered anti-rheumatic 
drug, exhibits broad-spectrum antibacterial and anti-
viral activity in vitro. Preclinical studies indicated that 
it targeted the bacterial flavoenzyme TrxR, essential 
for M.tb survival by protecting against oxidative and 
nitrosative stress. By inhibiting TrxR, auranofin com-
promises M.tb defense mechanisms, especially in the 
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oxidative environment of macrophage phagosomes 
[91]. Despite showing efficacy in ex  vivo whole blood 
cultures, auranofin did not affect sputum culture con-
version in early clinical trials [25]. Its potential against 
acute and latent M.tb infections is still under investiga-
tion, and small-scale clinical trials may be necessary to 
assess its anti-TB efficacy either as a monotherapy or in 
combination with other anti-TB drugs.

Glutathione (GSH)
GSH, a naturally occurring antioxidant, plays a vital 
role in protecting cells from oxidative stress-induced 
damage, regulating DNA expression, detoxifying reac-
tive metabolites, providing cysteine reservoirs, modu-
lating apoptosis and antigen-presenting cell functions 
[92]. In vitro studies showed that H37Rv strain is sen-
sitive to GSH, highlighting its potential for intracellu-
lar M.tb control [93]. Liposomal glutathione (L-GSH) 
supplementation was found to decrease the intracel-
lular mycobacterial burden within in vitro granulomas 
derived from the PBMCs of patients with type 2 diabe-
tes mellitus (T2DM) [26]. However, the small sample 
size and in vitro granuloma model used thus far do not 
fully replicate the complex granulomatous environ-
ments observed in PTB patients. Further small-scale 
clinical trials are needed to validate GSH’s therapeutic 
effects in patients with TB.

Ambroxol (Amb)
Ambroxol, an active metabolite of bromhexine, is 
approved for the treatment of airway diseases in sev-
eral countries. Preclinical studies have demonstrated 
that ambroxol enhanced the antimycobacterial activity 
of rifampicin against intracellular BCG [27], induced 
autophagy through the activation of TFEB both in vitro 
and in vivo models, promoted mycobacterial killing in 
macrophages. Moreover, it has been shown to potenti-
ate rifampin’s activity in a murine tuberculosis model 
[94]. However, the optimal dosage of Amb when co-
administered with rifampin or vancomycin remains 
under investigation. Amb is metabolized by Cyp3A4, 
which is strongly induced by rifampicin in humans. 
High-dose Amb (1000  mg/day) has been used clini-
cally to counteract rifampicin-induced Cyp3A4 activa-
tion and achieve sufficient Amb levels. However, this 
increased dose also resulted in higher levels of Cyp3A4-
derived Amb metabolites, whose clinical implications 
remain unclear. Further clinical trials are needed to 
explore the interaction of Amb with other TB drugs 
and long-term impact on patients.

Therapeutic target
Nuclear receptor corepressor 1(NCoR1)
NCoR1 is a scaffolding protein that forms the foundation 
of a large corepressor complex responsible for suppress-
ing the expression of genes involved in various biologi-
cal processes [95]. The NCoR1 corepressor is involved in 
both autophagy and lysosome biosynthesis by fine-tuning 
ATP homeostasis via the AMPK–mTOR–TFEB signaling 
axis to control M.tb infection in myeloid cells. Preclini-
cal studies have demonstrated that NCoR1 depletion, 
followed by treatment with rapamycin, anti-mycin-A, or 
metformin restored TFEB activity and LC3 levels, lead-
ing to improved clearance of M.tb [28]. Thus, NCoR1 is 
a promising therapeutic target for HDT in TB. However, 
it remains to be determined whether its beneficial effects 
are primarily mediated via the inhibition of direct PPARγ 
target genes, such as CD36, or through the PPARγ-
mediated repression of proinflammatory transcription 
factors, such as NF-kB.

ZBTB25
ZBTB25, a host transcriptional repressor protein asso-
ciated with the histone deacetylase 1 (silencing com-
plex), has been identified as another potential target for 
HDT in TB. Preclinical evidence has shown that knock-
down of ZBTB25 enhanced the release of lL-12p40 from 
infected macrophages. Treatment of macrophages with 
ZBTB inhibitors further induced autophagy and elimi-
nated intracellular M.tb by enhancing JAK2 and STAT4 
phosphorylation [29]. Additional research is necessary 
to determine the efficacy and safety of ZBTB inhibitors 
in clinical trials, as well as their potential in combination 
therapies with existing anti-TB drugs.

Promising candidates that reduce tissue damage
Tuberculoid granulomas (Fig.  4), the hallmark lesions 
of chronic TB, are well-organized, compact structure 
composed of differentiated macrophages, lymphocytes, 
and other immune cells [96, 97]. As granulomas mature, 
they develop fibrous walls and experience a significant 
decrease in the number of vessels penetrating the struc-
ture, which hampers the penetration of anti-TB drugs 
into the necrotic and hypoxic areas of the granuloma, 
where M.tb persists [98, 99]. The poor permeability of 
anti-TB drugs within granulomas, coupled with inef-
fective regulation of extracellular signaling, allows M.tb 
to adapt and develop drug resistance. In such environ-
ments, M.tb switches to fatty acid metabolism to enter a 
persistent state. HDT strategies can improve therapeutic 
outcomes by enhancing immune homeostasis during the 
formation and resolution of granulomas. By improving 
vascular perfusion within granulomas, HDT can increase 
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the local concentration of antimicrobials, promote tissue 
repair, and enhance the clearance of latent mycobacteria 
by immune cells.

Isocitrate lyase (ICL) inhibitors
ICL plays a crucial role in mycobacterial glyoxylate 
and methyl isocitrate cycles, which are essential for 
M.tb survival, virulence [100], and antibiotic tolerance 
[101]. Preclinical studies demonstrated that itaconate, 
a structural analog of succinate, inhibits ICL through 
covalent interaction with the catalytic cysteine resi-
dues (Cys191 of ICL1 and Cys215 of ICL2) of M.tb [30]. 
Dimethyl itaconate activates innate immune defenses, 
maintains inflammatory homeostasis, activates STAT3 
and autophagy, and exhibits strong antimycobacterial 

properties in both macrophages and in  vivo models 
[102]. Additionally, itaconic acid promotes the pen-
tose phosphate pathway, leading to ROS production, 
enhancing its anti-inflammatory and antibacterial 
properties [103]. In addition, Irg1-deficient phago-
cytes, which cannot produce itaconate, have shown 
increased susceptibility to M.tb infection, with infected 
mice exhibiting higher bacterial loads, reduced sur-
vival, exacerbated inflammation, extensive necrotizing 
granuloma formation and elevated neutrophil infiltra-
tion in the lungs [104, 105]. In summary, the develop-
ment of pharmacological agents that promote itaconate 
production could potentially mitigate pathological 
inflammatory responses and prevent severe lung injury 

Fig. 4 The structure and main composition of granuloma and related drugs
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associated with TB progression. But further research is 
needed to confirm these findings in clinical trials.

Phosphodiesterase inhibitors (PDE‑Is)
Phosphodiesterases (PDEs) regulate the concentration of 
cyclic adenosine monophosphate (cAMP), a key second 
messenger in both eukaryotic and prokaryotic systems 
[106]. M.tb manipulates cAMP signaling pathways within 
infected macrophages, thereby influencing its survival 
[107]. Preclinical studies have showed that PDE inhibi-
tors, such as sildenafil and cilostazol, can decrease tis-
sue pathology, accelerate bacterial clearance, and reduce 
the time to lung sterilization in M.tb-infected mice when 
used in combination with standard TB therapy [33]. 
PDE4 inhibitors, including CC-11050, CC-3052, and rof-
lumilast, when combined with INH, have been shown 
to reduce the lung bacillary burden, lung pathology, and 
fibrosis, as well as the size and number of lung granu-
lomas in M.tb-infected rabbits and in both acute and 
chronic TB mouse models [35, 108, 109]. A phase 2 clini-
cal trial demonstrated that CC-11050 and everolimus 
were safe and well tolerated as TB adjuvant treatments 
and enhanced recovery of lung function  (FEV1), which 
correlates with reduced all-cause mortality [67]. How-
ever, contrasting data from other studies showed that 
the addition of PDE4i rolipram to standard TB treatment 
accelerated mortality, increased the bacterial burden, and 
did not reduce the time to bacterial clearance in the lungs 
of a mouse model of TB [34], raising concerns about the 
general applicability of PDE-Is. Therefore, understanding 
the differential impacts of various PDE-Is and their long-
term outcomes is essential before widespread clinical use.

Glutamine metabolism antagonist
Glutamine metabolism is crucial for T-cell cytokine pro-
duction and M1-like polarization of macrophages in the 
proinflammatory response against M.tb infection [110]. 
Glutamine also serves as a key carbon and nitrogen 
source for M.tb-infected macrophages [111], support-
ing the pathogen’s metabolic demands. The glutamine 
metabolism antagonist, JHU083, has been shown to 
inhibit M.tb replication both in vitro and in vivo, improv-
ing survival, reducing lung bacterial burden, and improv-
ing lung histopathology. These effects are achieved by 
reducing immunosuppressive myeloid cells, increasing 
effector T cells, and enhancing the production of citrul-
line and NO. However, in M.tb-infected immunocompro-
mised mice, JHU083 showed reduced therapeutic efficacy 
[36]. This suggests that its benefits may be limited in 
patients with weakened immune systems, such as those 
co-infected with HIV. Therefore, further clinical trials are 
needed to assess its potential as an immunotherapeutic 

agent against TB, particularly in diverse patient popula-
tions with varying immune statuses.

Anticancer drugs
Polena et  al. demonstrated that blocking vascular 
endothelial growth factor (VEGF) signaling with antibod-
ies against VEGF or VEGFR-2 reduced M.tb transmis-
sion to the lung, spleen, and liver in M.tb-infected mice 
[112]. In line with this, bevacizumab (Avastin), a human-
ized monoclonal antibody against VEGF commonly used 
in cancer treatment, has demonstrated potential in the 
context of TB. In M. marinum-infected zebrafish, target-
ing VEGFR signaling improved the therapeutic effect of 
rifampicin [113]. Additionally, a preclinical study using 
a rabbit TB model showed that bevacizumab inhibited 
neovascularization, enhanced drug penetration into 
granulomas, improved lung pathology, and increased 
oxygenation, suggesting its potential to enhance the effec-
tiveness of the current TB regimens [37]. However, larger 
multicenter randomized controlled trials are required to 
formulate guidelines for the clinical use of bevacizumab 
in treating tubercular granulomas. VEGF-A, which binds 
to VEGFR1, functions as an effective chemokine for 
macrophages. According to Harding et  al., suppressing 
VEGF-A reduced granulomatous inflammation by inter-
fering the recruitment of monocytes to infected tissues 
[114]. This suppression could potentially improve the 
survival of mice infected with virulent M.tb, while main-
taining host defense. Thus, VEGF-A presents a potential 
target for therapeutic interventions in TB therapy.

Metformin
Metformin, a first-line drug for patients with T2DM 
[115], is known to activate AMPK [38], a key meta-
bolic regulator. AMPK promotes autophagy by inhibit-
ing mTOR, a potent negative regulator of autophagy, or 
by activating unc-51-like kinase 1, which is essential for 
autophagy initiation [39, 40]. Furthermore, the AMPK/
PPAR γ coactivator-1 α (PGC1α) pathway upregulates 
autophagy-related genes, thereby promoting autophagy 
and phagosome fusion in macrophages during M.tb 
infection [116]. In  vitro research found that metformin 
activated a novel galectin-directed ubiquitin signal trans-
duction system in response to lysosomal membrane dam-
age, induces autophagy, and facilitates the elimination of 
M.tb from macrophages [117]. Additionally, metformin 
inhibits M.tb growth, induces mitochondrial ROS pro-
duction, promotes phagosome–lysosome fusion in vitro, 
ameliorates pulmonary pathology, attenuates chronic 
inflammation, augments immunity, and improves the 
therapeutic effect of the standard anti-TB regimen in 
M.tb-infected mice. In clinical studies, metformin ther-
apy was associated with improved clinical outcomes, 
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including reduced TB severity, and a lower incidence 
of latent TB infection (LTBI) [118]. Retrospective stud-
ies also suggested that metformin decreased the risk of 
TB incidence [119, 120], cavitary TB [118], and mortal-
ity associated with diabetes mellitus during TB treat-
ment [121]. Additionally, metformin has been shown to 
improve sputum culture conversion and lower the relapse 
rate of patients with TB-DM [122]. However, in one 
study, the use of a low dosage of metformin in combina-
tion with conventional ATT did not accelerate sputum 
culture conversion, which could be attributed to insuffi-
cient dosing [123]. Despite this, the role of metformin in 
reducing inflammation and improving overall outcomes 
makes it a promising adjunctive therapy in HDT for TB. 
Further prospective clinical trials are needed to deter-
mine whether the initial use of metformin can effectively 
prevent TB infection after exposure or simply mitigate 
the progression from LTBI to active disease. These stud-
ies should also aim to establish the optimal dose when 
metformin is used alongside current TB therapies, as well 
as its potential role in shortening treatment duration and 
enhancing prophylactic control of TB.

Nonsteroidal anti‐inflammatory drug (NSAID)
Aspirin
Aspirin, a commonly used NSAID, primarily works by 
inhibiting cyclooxygenase (COX) enzymes, particularly 
COX-1 and COX-2, which in turn blocks thromboxane 
A 2 synthesis [124]. A study conducted on M.tb-infected 
mice showed that the co-administration of aspirin and 
pyrazinamide enhanced the efficacy of pyrazinamide 
during the early stage of TB treatment [42]. Additionally, 
a phase 2, randomized placebo-controlled trial showed 
that aspirin reduced stroke and death in HIV-uninfected 
adults with TB meningitis (Table 2) [41]. However, given 
the widespread use of aspirin, which may overlap with 
anti-TB treatment, it is necessary to determine their 
potential interaction in vivo. Initial assessment should be 
conducted using animal models, followed by larger stud-
ies involving children and adults. In addition, long-term 
TB treatment studies in mice, evaluating the effects of 
aspirin in combination with pyrazinamide and other TB 
drugs are needed to determine the potential role of aspi-
rin in reducing TB treatment and preventing relapse.

Ibuprofen
Ibuprofen, another commonly used NSAID, inhibits 
COX-1 and COX-2 [125], both of which are involved in 
the synthesis of prostaglandin E 2  (PGE2) in macrophages 
[126]. COX inhibition has been shown to enhance nitric 
oxide synthase (iNOS), TNF-α and IFN-γ expression and 
reduce mycobacterial loads by inhibiting the expressions 
of the  PGE2 [127]. However, PGE2 is known to play a 

dual role, as it can both suppress the immune response 
against M.tb and protect the host from excessive inflam-
mation, suggesting that NSAIDs should be exercised 
with caution for TB treatment [128]. In some studies, the 
5-lipoxygenase inhibitor zileuton, when co-administered 
with PGE2, reduced pulmonary bacterial burden and 
pathology and prevented acute death in M.tb-infected 
mice deficient in both IL1R1 and IFNAR1 [129]. Early 
animal studies also reported that ibuprofen enhanced 
the mycobactericidal effect of pyrazinamide in M.tb-
infected mice [42], reducing the size and number of lung 
lesions, decreasing bacterial load, and prolonging sur-
vival of C3HeB/FeJ mice, which are particularly vulner-
able to TB [43]. However, the combination of ibuprofen 
with standard chemotherapy has not yet been evaluated. 
Additionally, some studies have raised concerns, as ibu-
profen treatment can increase the bacterial load and 
decrease survival in CB6F1 mice following high-dose 
aerosol infection [130]. Therefore, further animal experi-
ments and clinical trials are needed to evaluate the effects 
of ibuprofen on both active and latent TB.

Indomethacin
Indomethacin, an NSAID that participates in both innate 
and adaptive immunity [131], has been shown to reduce 
the proportion of M.tb antigen-triggered Tregs, reactions 
of M.tb specific cytokines, and proliferation of T cells in 
active TB. This suggests their potential use in regulating 
immune responses against TB infection [44]. Neverthe-
less, future clinical trials should be conducted to explore 
the in vivo effects of indomethacin in patients during var-
ious stages of M.tb infection.

Miscellaneous drugs
Matrix metalloproteinase (MMP) inhibitor
MMP is a proteolytic enzyme that degrades the extracel-
lular matrix, including elastin and collagen [136]. Ele-
vated MMP levels are associated with lung inflammation 
and granuloma necrosis in TB. Marimastat (BB-2516), 
a small molecule MMP inhibitor, has shown promise by 
enhancing the in vivo efficacy of INH and RFP, increasing 
the proportion of healthy blood vessels at the infection 
site, and enhancing drug delivery and retention [137]. In 
a human lung tissue model of TB granulomas, marimas-
tat blocked both granuloma formation and mycobacterial 
growth [45]. Moreover, anti-MMP-9 antibody treatment 
in C3HeB/FeJ mice led to the development of hypoxic 
TB granulomas and cavitary lesions, resulting in a lower 
relapse rate, although this was not significantly different 
[138]. Doxycycline, another MMP inhibitor, effectively 
prevented collagen destruction induced by TB infection 
[46]. Promising results from a recent phase II clinical 
trial showed that adjunctive doxycycline with standard 
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anti-TB treatment may hold potential [132]. However, 
cipemastat, a selective MMP inhibitor, paradoxically 
increased cavitation, immunopathology, and mortality 
in a murine model of cavitary TB [139]. Further phase 3 
clinical trials with larger sample sizes are needed to thor-
oughly assess the immunopathological effects of MMP 
inhibitors like doxycycline on TB.

Resveratrol
Sirtuin 1(Sirt1), an NAD-dependent deacetylase, inhib-
its apoptosis in mammalian cells. M.tb infection down-
regulates Sirt1 expression, which is crucial for negatively 
modulating inflammatory responses by inhibiting the 
activation of TAK1, MAPK and NF-κB pathways and 
reducing IL-6 and TNF-α levels. Resveratrol treatment 
reverses this effect [47] and demonstrates the ability 
to decrease bacterial burden and improve lung pathol-
ogy in Mabc-infected mice and zebrafish by activat-
ing Sirt3 [140]. Furthermore, resveratrol inhibited both 
M.tb-induced early and later apoptosis in macrophages, 
thereby markedly inhibiting intracellular M.tb growth 
[48]. Moreover, Sirt2 enhances macrophage activa-
tion in response to M.tb infection. Inhibition of Sirt2 by 
AGK2 restricted both drug-sensitive and drug-resistant 
M.tb strains, enhanced the efficacy of isoniazid, reduced 
the bacillary burden and improved disease pathology in 
M.tb-infected mice [141]. Sirt7 restricts intracellular M.tb 
growth by enhancing NO release from macrophages and 
NO-dependent apoptosis [142]. However, further stud-
ies on different experimental models, such as non-human 
primates, and with a range of other chemical inhibitors of 
sirtuins are required to fully explore the potential of sir-
tuin inhibitors as HDT for TB.

Thalidomide
Thalidomide, originally used as a sedative, hypnotic, 
and antiemetic, could promote host immunity against 
M.tb infection by increasing cytokines production and 
T lymphocyte proliferation [143]. When combined with 
antibiotics, thalidomide lowered TNF-α levels, reduced 
leukocytosis, and alleviated brain pathology, resulting in 
markedly improved survival in a rabbit model of acute 
M.tb CNS infection [144]. Clinical studies have shown 
that the addition of thalidomide to the anti-TB treatment 
regimen resulted in substantial clinical and neuroradio-
logical improvement, with a favorable safety profile and 
good tolerability in patients with tuberculous meningitis 
(TBM) [49]. However, owing to concerns about its tera-
togenic and potentially mutagenic effects, its use in TB 
treatment remains experimental and requires further 
investigation.

Omega‑3 long‑chain polyunsaturated fatty acids (n‑3 
LCPUFA)
N-3 LCPUFA, found in oily fish and supplements such 
as eicosapentaenoic acid and docosahexaenoic acid, are 
essential for numerous physiological and biochemical 
processes, especially in inflammation modulation. Stud-
ies have shown that adding n-3 LCPUFA to TB treatment 
regimens reduced M.tb burden [50], decreased systemic 
and lung inflammation [51], and enhanced weight in 
M.tb-infected C3HeB/FeJ mice with a sufficient n-3 LCP-
UFA status [52].

Therapeutic target
Nuclear receptor
In M.tb infections, several nuclear receptor agonists 
have demonstrated encouraging results in enhancing 
host antimicrobial defense and autophagy. Overexpres-
sion of nuclear receptor subfamily 1, group D member 1 
(NR1D1)/Rev-Erba, an orphan nuclear receptor, has been 
shown to enhance the antimycobacterial properties of 
macrophages and decrease the survival of M.tb by pro-
moting phagosome–lysosome maturation through IL-10 
repression in human macrophages[53]. Chandra et  al. 
identified NR1D1 as a potential antimicrobial therapeutic 
target because it promotes autophagy and lysosomal bio-
genesis through positive regulation of TFEB expression. 
GSK4112, a synthetic agonist of NR1D1, also induced 
autophagy in human macrophages [145], support-
ing the involvement of NR1D1 in the clearance of M.tb. 
Another nuclear receptor, peroxisome proliferator-acti-
vated receptor α (PPAR-α), modulates gene expression 
related to inflammation and mediates antimycobacte-
rial responses against M.tb infection by activating the 
expression of genes associated with autophagy, lysoso-
mal function, and phagosomal maturation through lipid 
catabolism and upregulation of TFEB transcription[54]. 
Gemfibrozil (GEM), a PPAR-α activator, has been shown 
to decrease Mabc burden and inflammatory responses 
in  vivo [146]. In addition, the oldest orphan nuclear 
receptor estrogen-related receptor α (ERRα), an impor-
tant regulator of metabolic gene transcription and innate 
immune function, including those induced by toll-like 
receptor (TLR) and antimicrobial activities against intra-
cellular bacterial infection [147], facilitated post-trans-
lational activation of autophagy by deacetylating various 
autophagy-related proteins, including ATG5, BECN1, 
and ATG7. Additionally, ERRα is regulated downstream 
of AMPK and is crucial for antimicrobial host defense 
against M.tb infection by promoting phagosome matu-
ration and regulating excessive inflammation [55]. In 
summary, strategies targeting ERRα may offer novel ther-
apeutic options for TB treatment.
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IL‑1 receptor antagonist (IL‑1Ra)
IL-1Ra, encoded by Il1rn, binds to IL-1R1 without induc-
ing signaling pathways and prevents the binding of 
IL-1α/β [148]. An intervention using an anti-IL-1Ra anti-
body in M.tb-infected B6.Sst1s mice, designed to block 
IL-1Ra and restore IL-1 signaling, resulted in decreased 
bacterial burden in the lungs, maintained body weight, 
and reduced lung lesions in mice [56], suggesting that 
IL-1Ra might be a promising target for HDT during M.tb 
infection.

Furthermore, certain combination therapies involving 
HDT have also shown promising results. For instance, 
everolimus combined with oral L-GSH increased the 
levels of Th1 cytokines, including IFN-γ, TNF-α, and 
IL-2 and decreased intracellular M. bovis BCG infec-
tion in patients with T2DM [149]. The combination of 
phenylbutyrate (PBA) and 1,25-dihydroxyvitamin D3 
(1,25(OH)2D3) induces LL-37 expression in a lung epi-
thelial cell line and enhances M.tb killing in human 
monocyte-derived macrophages through activation of 
autophagy and resolution of lung pathology [150]. Clini-
cal trials have also demonstrated that therapy with PBA 
in combination with vitD3 can promote the clearances of 
M.tb from the respiratory tract, accelerate sputum cul-
ture conversion, reduce clinical symptoms, and promote 
favorable immunomodulation, thus improving treatment 
outcomes [146]. However, daily supplementation with 
vitD3 + PBA improved clinical TB symptoms and other 
complications but did not substantially affect bacterial 
clearance in sputum [147]. These mixed results under-
score the need for further research to optimize HDT 
strategies.

Discussion
Currently, while traditional anti-tuberculosis thera-
pies, such as the standard first-line regimen (isoniazid, 
rifampicin, pyrazinamide, and ethambutol), have been 
effective in treating drug-susceptible TB, they face sig-
nificant challenges, including drug resistance, adverse 
effects, and prolonged treatment durations [1]. Conse-
quently, researchers have explored innovative therapeutic 
approaches, including HDT. HDTs offer a complemen-
tary approach by targeting host immune responses to 
enhance bacterial clearance and reduce tissue damages. 
Recently, HDT drugs, used as adjuvants to conventional 
antidrug regimens, have provided new ideas and hopes, 
particularly for patients with TB with drug resistance or 
with various underlying diseases. Findings from a recent 
study indicate that HDT can reduce the course of therapy, 
lower the occurrence of drug resistance, and cure refrac-
tory tuberculosis. Several HDT drugs used in the treat-
ment of TB, including statins, macrocyclic lactones, and 

TKI, have received approval by the US Food and Drug 
Administration for other clinical applications, under-
scoring their favorable safety profiles. In addition, while 
we have categorized HDTs into two broad groups based 
on their primary effects—(1) decreasing TB burden and 
(2) reducing tissue damage—it is important to note that 
some HDTs can simultaneously address both aspects. For 
example, metformin, a well-studied HDT agent, not only 
limits excessive inflammation and tissue damage by mod-
ulating immune responses but also promotes autophagy 
through mTOR inhibition, thereby enhancing the clear-
ance of M. tb [118]. These dual-function HDTs highlight 
the potential for multifunctional therapies that target 
both bacterial survival and host immunopathology. How-
ever, for the sake of clarity and intuitive presentation, we 
have classified HDTs based on their dominant mecha-
nism of action. This approach allows for a more struc-
tured discussion while acknowledging the multifaceted 
nature of some HDTs.

In terms of cost-effectiveness, traditional therapies are 
generally inexpensive but may incur higher long-term 
costs due to treatment failures, drug resistance, and man-
agement of adverse effects. On the other hand, HDTs, 
while potentially more expensive initially, could reduce 
overall healthcare costs by improving treatment efficacy, 
shortening therapy durations, and minimizing complica-
tions. Some HDTs, such as vitamin D, are also a practi-
cal and cost-effective solution. However, the widespread 
adoption of HDTs requires further validation through 
large-scale clinical trials to establish their efficacy, safety, 
and cost-effectiveness in diverse populations. By integrat-
ing HDTs with existing anti-TB regimens, it may be pos-
sible to achieve a more balanced and effective approach 
to TB management, particularly for drug-resistant and 
complicated cases.

With respect to safety, it is also crucial to thoroughly 
evaluate the safety profiles and potential adverse effects 
of HDTs. For instance, metformin, is generally well-
tolerated but can cause gastrointestinal side effects 
(e.g., nausea, diarrhea) and, in rare cases, lactic acido-
sis, particularly in patients with renal impairment [118]. 
Similarly, vitamin D supplementation, although safe at 
recommended doses, can lead to hypercalcemia and 
hypercalciuria if administered in excess [151]. Other 
HDT agents, such as statins, are associated with muscle-
related adverse effects (e.g., myopathy and rhabdomyoly-
sis), especially at high doses or when used in combination 
with other medications metabolized by the cytochrome 
P450 system [152]. Additionally, immunomodulatory 
agents like tofacitinib, a JAK inhibitor, carry risks of 
increased susceptibility to infections, particularly in 
immunocompromised individuals, as well as potential 
cardiovascular and thromboembolic events [153].
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Therefore, in the future, HDT research should focus 
on several key areas: (1) refining drug delivery systems 
to enhance the efficacy of HDT agents in the lungs; (2) 
conducting larger, multicenter clinical trials to determine 
optimal dosing and safety profiles; (3) investigating the 
potential for combination therapies to shorten TB treat-
ment durations while minimizing side effects. Addressing 
these priorities will be critical for advancing HDT from 
preclinical promise to clinical reality, and (4) developing 
more robust and physiologically relevant in  vitro assays 
and in  vivo models that better recapitulate the com-
plex host–pathogen interactions and immune responses 
observed in human TB.
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