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Abstract 

Perioperative neurocognitive disorder (PND) is a common neurological complication after surgery/anesthesia 
in elderly patients that affect postoperative outcome and long-term quality of life, which increases the cost of fam-
ily and social resources. The pathological mechanism of PND is complex and not fully understood, and the meth-
ods of prevention and treatment of PND are very limited, so it is particularly important to analyze the mechanism 
of PND. Research indicates that mitochondrial dysfunction is pivotal in the initiation and progression of PND, 
although the precise mechanisms remain elusive and could involve disrupted mitophagy. We reviewed recent studies 
on the link between mitophagy and PND, highlighting the role of key proteins in abnormal mitophagy and discussing 
therapeutic strategies aimed at mitophagy regulation. This provides insights into the mechanisms underlying PND 
and potential therapeutic targets.
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Introduction
Perioperative neurocognitive disorder (PND) is a preva-
lent and severe neurological complication in elderly 
patients following surgery/anesthesia. It encompasses 
both objectively measured cognitive decline and subjec-
tively reported cognitive deficits, as well as changes in 
daily living activities before and after surgery [1]. Affect-
ing 5–55% of the elderly patients [2], PND significantly 
increases the rates of postoperative morbidity, mortality, 

and the incidence of long-term cognitive dysfunction [3, 
4]. The pathogenesis of PND involves various factors, 
there are no effective drugs or interventions to prevent 
PND yet. Mitochondria, often referred to as the “power-
house of the cell”, play a crucial role in neuronal develop-
ment and synaptic plasticity [5, 6]. Mitochondrial quality 
control is a key factor in the health and survival of brain 
neurons, and mitochondrial dysfunction is closely associ-
ated with a variety of neurodegenerative diseases [7–10]. 
Similarly, mitochondrial dysfunction is increasingly rec-
ognized as playing a critical role in the development and 
progression of PND [11–13], although the specific mech-
anisms remain poorly understood. Research in animal 
and cellular models of PND has led to the hypothesis that 
abnormal mitophagy, which lead to the accumulation 
of damaged mitochondria, may be a key factor [14–16]. 
This review examines the molecular mechanisms under-
lying mitophagy abnormalities associated with PND, 
as well as promising therapeutic strategies targeting 
mitophagy abnormalities in PND demonstrated in recent 
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studies. The goal is to provide insights into the mecha-
nisms behind the occurrence and progression of PND 
and to identify potential new therapeutic targets.

Mitophagy
Autophagy is the cellular process in which autophago-
somes transport misfolded proteins, lipids, or dam-
aged organelles within the cytoplasm to lysosomes for 
degradation and clearance, playing a significant role 
in hippocampal-dependent cognitive adaptation [17]. 
Mitophagy, a selective form of autophagy, preserves 
mitochondrial function and cellular homeostasis by spe-
cifically targeting damaged or redundant mitochondria 
for removal from the cytoplasm [18]. Mitophagy is cru-
cial for maintaining intracellular mitochondrial quality 
and quantity equilibrium, thereby supporting normal 
mitochondrial function [19–21]. Under external stress-
ors such as hypoxia, nutrient deprivation, and cellular 
senescence, damaged mitochondria produce substan-
tial amounts of ROS, which triggers mitophagy to initi-
ate self-clearance by removing damaged mitochondria, 
thereby reducing ROS accumulation and maintaining 
cellular stability [22]. Additionally, mitophagy can ini-
tiate caspase-family-induced apoptosis and support 
cell survival by eliminating damaged mitochondria and 
preventing the excessive release of cytochrome C asso-
ciated with mitochondrial damage [23]. Neurons, as 
highly differentiated cells, demand substantial energy to 
sustain their intricate physiological functions, making 
mitophagy balance essential for neuronal health and sur-
vival [24]. Disruptions in neuronal mitophagy can lead 
to the accumulation of damaged mitochondria, increase 
ROS production, and compromise mitochondrial res-
piratory function, which in turn reduces energy supply. 
This energy deficit impairs neuronal function, dimin-
ishes physiological resilience, and ultimately trigger pro-
grammed cell death in neurons [25] (Fig. 1).

The PINK1/Parkin pathway is the most extensively 
studied mitophagy pathway in neurological diseases 
[26]. PINK1 is a mitochondrial serine/threonine kinase, 
with Parkin functions as an E3 ubiquitin ligase. Upon 
mitochondrial damage, PINK1 enters the inner mito-
chondrial membrane (IMM), accumulates on the outer 
mitochondrial membrane (OMM), and phosphorylates 
the serine 65 residue on ubiquitin molecules [27]. Con-
currently, Parkin is recruited to the damaged mitochon-
dria and phosphorylated by PINK1, then activates its E3 
ligase activity and promotes the ubiquitination of multi-
ple OMM proteins, leading to the formation of ubiquitin 
chains [28, 29]. Adaptor proteins, such as P62/SQSTM1, 
OPTN, NBR1, NDP52, and TAX1BP1, recognize phos-
phorylated ubiquitin chains on mitochondrial proteins. 
Through binding to microtubule-associated protein 

1A/1B light chain 3 (LC3), these adaptor proteins label 
damaged mitochondria for phagocytosis and degradation 
by autophagosomes [30–32].

Mitophagy regulates the molecular mechanism 
of PND
With advancing insights into the regulatory network 
of mitophagy, its intricate role in the pathogenesis of 
PND has gradually become apparent. Furthermore, the 
involvement of Nod-like receptor protein 3 (NLRP3) 
inflammasome, Synaptosome Associated Protein 25 
(SNAP25), pyroptosis, and neurotoxic proteins in the 
mitophagy process has been demonstrated in cellular and 
animal models of PND (Table  1), while the conclusions 
regarding the role of mitophagy in the onset and progres-
sion of PND are not yet consistent (Fig. 2).

In 2018, Ye et  al. were the first to propose a connec-
tion between PND and mitophagy [14]. They performed 
abdominal exploratory surgery on 4-month-old female 
C57BL/6J mice under sevoflurane anesthesia, and 
observed that surgery/anesthesia upregulated the expres-
sion of autophagy-related proteins, including LC3-II, 
Beclin-1, Parkin, and PINK1, damages mitochondria, 
and induces behavioral and cognitive impairments in 
mice. Pretreatment with Honokiol (HNK) was found to 
further enhance autophagy biomarker expression, reduce 
mitochondrial ROS levels, alleviate mitochondrial struc-
tural damage, and improve postoperative cognitive func-
tion in surgery/anesthesia-induced mice. In contrast, the 
use of the autophagy inhibitor 3-Methyladenine (3-MA) 
reversed the effects of HNK on mitophagy and cognition 
in these mice. In addition, Chen et al. demonstrated that 
mitophagy dysfunction is a primary cause of sevoflurane-
induced mitochondrial damage in H4 cells and PND in 
aged rats [15]. Sevoflurane treatment induces mito-
chondrial dysfunction and mitophagy deficiencies in H4 
cells and aged rat hippocampal neurons, which include 
increased ROS levels, decreased membrane potential, 
impaired respiratory function, accumulation of the mito-
chondrial marker protein Tomm20, and reduced levels 
of the lysosomal marker protein LAMP1. Ac-YVAD-cmk 
can inhibit sevoflurane-induced intracellular lysosomal 
dysfunction of H4 cell, promote mitophagy, and allevi-
ate intracellular ROS levels and mtROS accumulation 
[33]. Administration of rapamycin, an autophagy acti-
vator, reduced sevoflurane-induced ROS production, 
restored mitochondrial phagocytosis levels, alleviated 
mitochondrial damage and improved cognitive function 
in aged rats. Conversely, it is worth noting that Wang 
and colleagues performed laparotomy on 18-month-old 
male C57BL/6J mice under sevoflurane anesthesia and 
found promoted mitophagy and reduced mitochon-
drial area in hippocampal neurons, accompanied by 
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ROS accumulation, neuronal apoptosis, and tau protein 
misfolding [16]. Preoperative administration of vareni-
cline improved cognitive function in mice by reduc-
ing mitophagy levels, restoring mitochondrial function, 
lowering oxidative stress, and inhibiting tau phospho-
rylation. In all, these findings suggest that PND may be 
linked to the relative capacity of mitophagy and the accu-
mulation of damaged mitochondria.

NLRP3 inflammasome
Neuroinflammation plays a central role in the pathogen-
esis of PND [34]. Surgery/anesthesia can trigger a sys-
temic inflammatory response that activates inflammation 

in the central nervous system through various pathways, 
such as impairing neuronal function, hindering neuronal 
regeneration, and inducing apoptosis, which collectively 
lead to cognitive decline [35]. NLRP3 inflammasome 
is well expressed in neuronal tissues and plays a crucial 
role in the progression of chronic neurodegenerative dis-
eases [36]. The NLRP3 inflammasome is a complex com-
posed of sensors (NOD-like receptor protein 3, NLRP3), 
adaptors (apoptosis-associated speck-like protein with a 
caspase recruitment domain, ASC), and effectors (cas-
pase-1) that are vital for inflammatory regulation [37]. 
Upon detecting exogenous pathogens or endogenous cell 
damage signals, NLRP3 recruits ASC proteins, triggering 

Fig. 1  Physiological function of mitophagy in neurons. Under conditions such as hypoxia, nutrient deprivation, and cellular senescence, damaged 
mitochondria generate high levels of ROS, triggering mitophagy to clear these damaged mitochondria. Concurrently, mitophagy initiates 
caspase-family-induced apoptosis by removing damaged mitochondria, thus preventing excessive cytochrome C release due to mitochondrial 
injury. When mitophagy is impaired, the resulting ROS accumulation reduces ATP production and initiates programmed neuronal death. (This 
image was generated and provided under the BioRender license using BioRender. All rights and ownership of BioRender content belong 
to BioRender.)
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inflammasome assembly and activating caspase-1. Acti-
vated caspase-1 then promotes the maturation and 
secretion of inflammatory cytokines IL-1β and TNF-α, 

intensifying inflammation and initiating pyroptosis [38]. 
Mitochondrial dysfunction prompts the overproduc-
tion of mitochondrial ROS (mtROS) and the release 

Table 1  Molecular mechanisms of mitophagy and interventions in PND

References Models Molecular mechanisms Interventions and mechanisms

[14] 4-Month-old female mice received 
laparotomy under sevoflurane 
anesthesia

↑LC3 II/I, Beclin-1, Parkin, PINK1
↑NLRPS, ASC, Caspase-1, IL-1, IL-8

HNK ↑↑LC3-II/I, Beclin-1, Parkin, PINK1
↓NLRPS, ASC, Caspase-1, IL-1, IL-8

[15] 18-Month-old rats under sevoflu-
rane anesthesia
Primary hippocampal neurons 
and H4 human neuroglioma cells 
exposure to sevoflurane

↑LC3B II/I, P62, Tomm20 and COX4I1
↓Parkin in mitochondria, OPA1, 
Mfn2, LAMP1

Rapamycin ↑↑LC3B II/I
↑Parkin in mitochondria, LAMP1
↓P62, Tomm20 and COX4I1

[16] 18-Month-old male mice received 
laparotomy under sevoflurane 
anesthesia

↑AT8, LC3B II/1, P62, PINK1, Parkin, 
Beclin-1
↓Caspase 3, BDNF

Varenicline ↓AT8, LC3B II/1, P62, PINK1, Parkin, 
Beclin-1
↑ Caspase 3, BDNF

[43] 16- to 18-Month-old male mice 
received partial hepatectomy 
under isoflurane anesthesia

↓LAMP1, PINK1, Parkin, PSD-95, 
BDNF
↑LC3B II/I, P62, Tomm20, NLRP3, 
Caspase-1, ASC, IL-1β

TREM2 ↑↑LC3B II/I, ↑LAMP1, PINK1, Parkin, 
PSD-95, BDNF
↓P62, Tomm20, NLRP3, Caspase-1, 
ASC, IL-1β

[33] 18-Month-old mice under sevoflu-
rane anesthesia
Primary hippocampal neurons 
and H4 human neuroglioma cells 
exposure to sevoflurane

↓LAMP2
↑LC3B II/I, P62, Tomm20, NLRP3, 
cleaved caspase-1, IL-1β, IL-18, 
Hsp60

Ac-YVAD-cmk ↑ LAMP2
↓LC3B II/I, P62, Tomm20, NLRP3, 
cleaved caspase-1, IL-1β, IL-18, Hsp60

[68] 12-Months-old male rats received 
laparotomy under isoflurane 
anesthesia
SH-SY5Y cells exposure to LPS

↓LC3 II/I, PINK1
↑P62, N-GSDME/GSDME, IL-1β, 
cleaved caspase-3,

AAV9-shPink1 ↓ ↓ LC3 II/I, PINK1,
↑↑P62,Clevedcaspase-3, N-GSDME/
GSDME, IL-1β

AAV9-Pink1 OE ↑LC3 II/I, PINK1
↓P62, N-GSDME/GSDME, IL-1β, 
cleaved caspase-3

[88] 20-Month-old male rats received 
laparotomy under sevoflurane 
anesthesia
HT22 cells exposure to LPS

↓LC3 II/I
↑Drp1, P62, VDAC, SOD2, COXIV

Mdivi-1 ↑LC3 II/I
↓P62, VDAC, SOD2, COXIV

[56] 12-Month-old rats received lapa-
rotomy under isoflurane anesthesia
SH-SY5Y cells exposure to LPS

↓LC3 II/I, PINK1,Parkin, SNAP25
↑P62, N-GSDME/GSDME, cleaved 
caspase-3

SNAP25 ↑LC3II/I, PINK1, Parkin, SNAP25
↓P62, N-GSDME/GSDME, cleaved 
caspase-3,

[44] 18- to 20-month-old male mice 
received myocardial ischemia–rep-
erfusion surgery under isoflurane 
anesthesia

↓P62
↑LC3B I/II, PINK1, Parkin, NLRP3, 
Caspase-1, IL-1β

Liraglutide ↑↑LC3B I/II, PINK1, Parkin
↓↓P62, ↓ NLRP3, Caspase-1, IL-1β

[57] 12-Month-old male mice received 
laparotomy under isoflurane 
anesthesia
SH-SY5Y and HT22 cells exposure 
to isoflurane and LPS

↓LC3 II/I, PINK1, Parkin
↑P62, cleaved caspase-3, N-GSDME, 
IL-1β, IL-18

AAV9-hSyn-shTNFAIP1 ↑LC3 II/I, PINK1, Parkin
↓P62, cleaved caspase-3, N-GSDME, 
IL-1β, IL-18

[45] 16-Month-old male mice received 
tibial fracture fixation under isoflu-
rane anesthesia
BV2 cells exposure to LPS

↓LC3 II/I, Beclin1
↑NLRP3, ASC, IL-1β, Caspase-1

Olaparib ↑LC3 II/I, Beclin1
↓NLRP3, ASC, IL-1β, Caspase-1

[108] 18-Month-old male mice received 
tibial fracture fixation under isoflu-
rane anesthesia
BV2 cells exposure to LPS

↑Tomm20, LC3 II/I, PHB2, PINK1, 
Parkin, IL-1β, IL-18, TNF-α
↓P62

Elamipretide (SS-31) ↑↑Tomm20, LC3 II/I, PHB2, PINK1, 
Parkin, IL-1β, IL-18, TNF-α
↓↓P62

[66] 18-Month-old male rats received 
laparotomy under isoflurane 
anesthesia
H19-7 cells exposure to isoflurane 
and LPS

↓LC3 II/I, PINK1
↑Tomm20, P62, IL-1β, IL-18, cleaved 
Caspase-1/Caspase-1, cleaved 
Caspase-11/Caspase-11, N-GSDME/
GSDMD

Dexmedetomidine ↑LC3 II/I, PINK1,
↓Tomm20, P62, IL-1β, IL-18, cleaved 
Caspase-1/Caspase-1, cleaved 
Caspase-11/Caspase-11, N-GSDME/
GSDMD
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of mitochondrial DNA (mtDNA), which activates the 
NLRP3 inflammasome and induces an inflammatory 
response [39]. The activation of the NLRP3 inflammas-
ome, in turn, damages mitochondria, reduces mitochon-
drial membrane potential, accumulates mtDNA, elevates 
mtROS production, and blocks mitophagy by activating 
caspase-1-dependent cleavage of Parkin. Caspase-1, a key 
cysteine protease activated by the NLRP3 inflammasome, 
cleaves Parkin into N-terminal (Parkin-N) and C-ter-
minal (Parkin-C) fragments [40]. This cleavage disrupts 

Parkin’s structure, leading to the loss of its E3 ubiquitin 
ligase activity. Consequently, mitochondrial outer mem-
brane proteins cannot be ubiquitinated effectively, block-
ing the initiation of mitophagy. This impairment further 
exacerbates mitochondrial dysfunction, elevating intra-
cellular ROS levels and intensifying the inflammatory 
response, which inhibits mitophagy, intensifies the mito-
chondrial inflammatory response, and further exacer-
bates mitochondrial dysfunction [41, 42]. In aged mice, 
surgery/anesthesia was shown to increase hippocampal 

Fig. 2  Molecular mechanism by which mitophagy regulates PND. A Surgery/anesthesia elevates ROS levels in the hippocampus, activates 
NLRP3 inflammasomes, stimulates the release of pro-inflammatory cytokines, intensifies neuroinflammatory responses, and contributes 
to the development of PND. Activation of the NLRP3 inflammasome induces mitochondrial damage, mtDNA buildup, and mtROS production, 
while inhibiting mitophagy by promoting caspase-1-dependent Parkin cleavage. B Surgery/anesthesia can inhibit mitophagy and promote 
the production of PND by promoting the production of proteins such as Aβ, tau and TNFAIP1. (This image was generated and provided 
under the BioRender license using BioRender. All rights and ownership of BioRender content belong to BioRender.)
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mtROS levels, activate NLRP3 inflammasomes, stimulate 
the release of pro-inflammatory cytokines, amplify neu-
roinflammatory responses, and impair spatial cognition 
[43]. Enhancing mitophagy can mitigate mitochondrial 
structural damage, lower mtROS and MDA production 
[14], inhibit NLRP3 inflammasome activation, reduce 
neuroinflammatory responses, and improve cognitive 
function [44]. Zheng et  al. demonstrated that sevoflu-
rane raised the expression of NLRP3, cleaved caspase-1, 
IL-1β, and IL-18 in the hippocampus of aged mice. The 
caspase-1 inhibitor Ac-YVAD-cmk was able to allevi-
ate mitochondrial dysfunction and restore mitophagic 
balance by inhibiting NLRP3 inflammasome activation, 
thereby improving sevoflurane-induced cognitive impair-
ment [33]. After lipopolysaccharide (LPS) treatment, 
the expression levels of NLRP3, caspase-1 and IL-1β in 
BV2 microglia cell were significantly higher than those 
in normal BV2 microglia cell, and the mitochondrial 
membrane potential was lower than that in normal BV2 
microglia cell. Rapamycin could significantly reduce the 
activation of NLRP3 inflammasome [45]. Additionally, a 
retrospective clinical study demonstrated that elevated 
levels of serum NLRP3 protein, IL-18, and IL-1β after 
cardiac surgery were associated with an increased risk of 
cognitive impairment 7  days after surgery. After adjust-
ing for confounding variables, high serum NLRP3 pro-
tein levels immediately after surgery were identified as 
an independent risk factor for the development of PND 
[46]. This evidence supports the involvement of NLRP3 
in PND in human studies. Altogether, NLRP3 inflamma-
some activation can inhibit mitophagy, promote mito-
chondrial damage, and then impair cognitive function. 
The enhancement of mitophagy can alleviate mitochon-
drial damage and inhibit the activation of NLRP3 inflam-
masome, thereby improving cognitive impairment.

SNAP25
As a presynaptic protein, SNAP25 is a critical compo-
nent of the SNARE complex, playing a significant role 
in regulating neurotransmitter release, synaptic plastic-
ity, neuronal repair, and long-term memory formation 
[47–49]. SNAP25 is the only protein known to localize to 
mitochondrial OMMs and has been shown to influence 
autophagy in neuronal cells [50, 51]. Reduced expres-
sion of SNAP25 is also associated with the inactivation 
of the PINK1/Parkin pathway [52]. Studies have shown 
that the reduction of SNAP25 leads to defects in presyn-
aptic short-term plasticity, abnormal dendritic spine 
morphology, and a significant decrease in the long time 
potentiation amplitude of postsynaptic terminals, which 
in turn affects learning and memory functions [53]. At 
the same time, the downregulation of SNAP25 expres-
sion was detected in the brain tissues of AD patients and 

PND model mice induced by anesthesia [54, 55]. Wang 
et al. found that surgery/anesthesia inhibited the expres-
sion of PINK1 and LC3 while promoting the cleavage of 
caspase-3 and GSDME. Overexpression of SNAP25 using 
AAV9 particles counteracted these effects, reducing 
PND severity. In SH-SY5Y cells treated with isoflurane 
and lipopolysaccharide (LPS), levels of PINK1, Parkin, 
and LC3-II decreased, while P62 accumulated. SNAP25 
knockdown blocked the accumulation of PINK1 in the 
OMM and the transport of Parkin to the mitochondria, 
further worsening mitophagy defects induced by iso-
flurane and LPS. Conversely, SNAP25 overexpression 
helped inhibit cell death in SH-SY5Y neuronal cells by 
restoring PINK1-dependent mitophagy [56]. The expres-
sion of TNFAIP1 was significantly upregulated in the 
hippocampus of mice after surgery/anesthesia. TNFAIP1 
is a ubiquitin ligase whose N-terminal region contains a 
BTB domain capable of binding to SNAP25. Through the 
K48-linked polyubiquitination pathway, TNFAIP1 can 
be targeted for degradation of SNAP25. Targeted knock-
down of TNFAIP1 expression could ameliorate surgery/
anesthesia induced memory deficits and PINK1/Parkin-
dependent mitophagy defects by stabilizing SNAP25 
[57]. Therefore, stabilizing or upregulating the expression 
of SNAP25, which can restore PINK1/Parkin-dependent 
mitophagy, contributes to the improvement of cognitive 
dysfunction induced by surgical anesthesia.

Pyroptosis
Pyroptosis, an inflammatory form of programmed cell 
death mediated by gasdermin (GSDM) family proteins, 
plays a critical role in the pathogenesis of PND [58, 
59]. GSDMS is a gene family with conserved structural 
motifs, which plays an important role in cell differentia-
tion and proliferation, cell death, mitochondrial homeo-
stasis, anti-microbial, inflammation and tumorigenesis 
[60]. All members of the GSDM family (except DFNB59) 
contain a cytotoxic n-terminal domain (NT) and a c-ter-
minal inhibitory domain (CT), which are connected by a 
flexible connecting region [61]. After being activated by 
pathogenic or damaging signals, the N-terminal domains 
of GSDM proteins A–E induce pyroptosis by bind-
ing to membrane lipids after cleavage by activated cas-
pases, forming pores in the cell membrane. This leads to 
osmotic imbalance, cell swelling, and eventual rupture of 
the cell membrane [62]. The NLRP3/caspase-1/GSDMD 
pathway is a classic pyroptosis pathway, and its activation 
in microglia and astrocytes has been linked to postop-
erative cognitive deficits [63]. In neonatal rats, continu-
ous exposure to 2% sevoflurane for 6  h significantly 
increased the expression of pro-apoptotic proteins such 
as Bax and pyroptosis-related proteins, including cleaved 
caspase-1, cleaved GSDMD, NLRP3, and ASC, leading 
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to both apoptosis and pyroptosis of hippocampal neu-
rons [64]. In aged mice, surgery/anesthesia-induced hip-
pocampal mitochondrial dysfunction activates NLRP3 
inflammasome–caspase-1-dependent pyroptosis, which 
impairs learning and memory in behavioral tests [65]. 
Chen et al. recently demonstrated that dexmedetomidine 
promotes mitophagy by upregulating PINK1, reducing 
caspase-1/11–GSDMD-dependent hippocampal neu-
ron death, and improving postoperative cognitive func-
tion in elderly rats [66]. Interestingly, GSDME is more 
highly expressed than GSDMD in the brain and in cer-
tain neuronal cell lines, such as SH-SY5Y neuroblastoma 
and HT-22 hippocampal neurons, suggesting a signifi-
cant role for GSDME in nervous system pyroptosis [67]. 
Wang et al. highlighted in in vivo and in vitro studies that 
PINK1 downregulation promotes caspase-3/GSDME-
dependent pyroptosis by reducing mitophagy, leading to 
PND-like behaviors in rats [68]. In animal experiments, 
surgery/anesthesia induced downregulation of PINK1 
and LC3-II in the hippocampus of 12-month-old male 
rats, along with abnormal accumulation of P62. Further 
PINK1 knockdown inhibited mitophagy, promoted cas-
pase-3/GSDME-dependent pyroptosis, and worsened 
cognitive dysfunction. Conversely, PINK1 overexpression 
alleviated cognitive impairment, restored mitophagy, 
and inhibited GSDME-dependent pyroptosis. In in vitro 
studies, LPS-treated SH-SY5Y cells displayed PINK1-
mediated mitophagy deficiency and GSDME-dependent 
pyroptosis, with these effects worsening when PINK1 
function was lost. Accordingly, pyroptosis through the 
NLRP3/caspase-1/GSDMD and caspase-3/GSDME path-
ways, regulates the expression of PINK1 and mitophagy, 
playing a key role in the pathogenesis of PND.

Neurotoxic proteins
Recent studies have revealed the increased levels of tau 
and Aβ proteins in the cerebrospinal fluid of patients 
undergoing anesthesia [69–73], which is associated with 
the incidence and severity of postoperative delirium [74, 
75]. Tau protein, a member of the microtubule-binding 
protein family, is primarily enriched around neuronal 
axons and plays a crucial role in regulating and maintain-
ing microtubule stability, which is essential for neuronal 
axon transport [76]. Abnormal phosphorylation and 
aggregation of tau protein disrupt neuronal structure and 
function, are linked to mitochondrial dysfunction, and 
contribute significantly to the pathogenesis of surgically 
induced cognitive dysfunction and neurodegenerative 
diseases such as AD [77–79]. Aberrant tau phosphoryla-
tion and aggregation can impact mitochondrial dynam-
ics, bioenergetics, and mitophagy, either by inhibiting 
Parkin translocation to mitochondria [80] or by altering 
mitochondrial membrane potential [81]. Aβ protein, a 

neurotoxic peptide of 39–43 amino acids, is produced 
through the cleavage of amyloid precursor protein 
(APP) by β-secretase and γ-secretase [82]. Aβ protein 
can accumulate within mitochondria by interacting with 
mitochondrial proteins, which promotes excessive ROS 
production and leads to mitochondrial damage. Addi-
tionally, Aβ protein can impair the mitophagy–lysosomal 
pathway by causing lysosomal dysfunction, leading to 
abnormal aggregation of mitophagosomes and substrates 
[83]. Enhancing mitophagy has been shown to reduce 
Aβ protein accumulation and tau hyperphosphorylation, 
thereby reversing memory impairment in mice [84]. In 
conclusion, the abnormal accumulation of tau and Aβ 
proteins after anesthesia is closely related to PND. By 
regulating the abnormal accumulation of these proteins 
and enhancing mitophagy, it may provide new strategies 
for the prevention and treatment of PND and AD.

Mitophagy‑related intervention strategies 
and potential clinical applications in PND research 
models
PND affects the prognosis and quality of life of patients 
after surgery, and increases the consumption of fam-
ily and medical resources. It is urgent to adopt effective 
prevention and treatment strategies to reduce the occur-
rence and development of PND. In view of the role of 
mitophagy in PND, we summarized the existing pharma-
cological and non-pharmacological strategies targeting 
mitophagy in order to provide new ideas for the preven-
tion and treatment of PND.

Pharmacological strategies
Rapamycin is an immunosuppressant that binds specifi-
cally to the mammalian target of rapamycin (mTOR) by 
forming a complex with a 12-kDa FK506 binding pro-
tein (FKBP12) [85]. Mammalian target of rapamycin 
(mTOR) is a highly conserved serine-threonine kinase, 
can regulate protein synthesis, energy metabolism, lipid 
metabolism, mitochondrial and lysosomal biogenesis 
[86]. Rapamycin has been shown to reverse sevoflurane-
induced autophagic flux damage through the mTOR 
signaling, thereby improving cognitive deficits in aged 
rats [87]. In sevoflurane-treated hippocampal tissue, 
rapamycin counteracts the increased levels of mito-
chondrial markers Tomm20 and P62 and the decreased 
expression of the lysosomal marker LAMP1, promoting 
mitophagy and reducing the number of damaged mito-
chondria. At the same time, rapamycin improving mito-
chondrial quality in neuronal cells, which significantly 
alleviates sevoflurane-induced cognitive impairment in 
rats [15]. Additionally, rapamycin promotes mitophagy in 
LPS-treated HT22 cells, reducing mitochondrial hyper-
division and improving mitochondrial function [88].
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Honokiol (HNK), a natural bisphenol compound 
derived from magnolia officinalis, exhibits multiple 
pharmacological activities, including anti-tumor, anti-
oxidant, anti-inflammatory, and neuroprotective proper-
ties [89]. As a small polyphenolic molecule, HNK easily 
crosses the blood–brain barrier, inhibiting intracellular 
Ca2 + influx, caspase-3 activity, and the abnormal aggre-
gation of Aβ protein, thereby providing neuroprotection 
[90]. HNK has been shown to support microglial phago-
cytic function by improving mitochondrial function [91]. 
Furthermore, HNK alleviates neuroinflammation and 
reverses surgery- and anesthesia-induced learning and 
memory deficits in mice by promoting mitophagy, lower-
ing mtROS levels, and inhibiting NLRP3 inflammasome 
activation [14].

Varenicline, a non-nicotine smoking cessation drug 
approved by the U.S. Food and Drug Administration, acts 
as a selective partial agonist of the α4β2-nicotinic ace-
tylcholine receptor (nAChR) [92]. The α4β2-nAChR, a 
ligand-gated ion channel widely distributed in the nerv-
ous system, regulates neurotransmitters such as ace-
tylcholine, γ-aminobutyric acid, and norepinephrine, 
playing a central role in learning, memory, cognition, 
attention, inflammation, and pain [93]. This nAChR sub-
unit in the central nervous system has been proposed as a 
potential target for treating age-related cognitive decline 
and various neurodegenerative and psychiatric disorders 
[94, 95]. Studies have shown that varenicline reduces 
neuroinflammation, tau misfolding, DNA damage, and 
apoptosis, thereby mitigating PND-like behaviors in aged 
mice [96]. Varenicline also alleviates surgery   and anes-
thesia-induced hippocampal oxidative stress, mitochon-
drial dysfunction, and aberrant mitophagy, reducing tau 
phosphorylation and improving cognitive function in 
mice through the PKR/STAT3 pathway [16].

Liraglutide, a glucagon-like peptide-1 (GLP-1) recep-
tor agonist, is primarily used to treat type 2 diabetes and 
obesity [97]. Recent research has expanded our under-
standing of liraglutide’s pharmacological effects, show-
ing potential efficacy in managing neurological diseases. 
Liraglutide improves neural encoding in the ventromedial 
prefrontal cortex and ventral striatum, correcting adapta-
tion mispredictions in patients with impaired insulin sen-
sitivity and normalizing sensory-related learning deficits 
in obese patients [98]. In AD mouse models, liraglutide 
improves learning and memory by reducing Aβ protein 
deposition and tau hyperphosphorylation, promoting 
synaptic plasticity, and reducing neuronal degeneration 
[99, 100]. In alcohol-dependent mice, liraglutide signifi-
cantly increased dendritic spine density and synaptic pro-
tein levels, alleviating anxiety and memory deficits linked 
to alcohol withdrawal [101]. Additionally, liraglutide 
mitigates neuroinflammation, reduces synaptic loss and 

impaired plasticity, and alleviates anxiety-like behaviors 
and cognitive deficits in aged mice post-cardiac surgery 
by increasing mitophagy and inhibiting NLRP3 inflam-
masome and microglial activation [44]. Recently, results 
from a Phase 2b clinical trial presented at the Alzheimer’s 
Association International Conference (AAIC) demon-
strated that liraglutide can slow the atrophy of key brain 
regions in AD patients and reduce the rate of cognitive 
decline [102]. However, it has not yet been reported in 
clinical trials of PND, and further research is still needed.

Elamipretide (SS-31), a novel mitochondria-targeted 
antioxidant, primarily localizes to the inner mitochon-
drial membrane, where it directly scavenges ROS and 
stabilizes the electron transport chain. SS-31 has dem-
onstrated neuroprotective effects across various neu-
rological disorders [103–106]. It has been shown to 
reverse isoflurane-induced mitochondrial dysfunction in 
the hippocampus of aged mice, promote brain-derived 
neurotrophic factor (BDNF) signaling and synaptic 
plasticity, reduce neuronal damage, and improve cogni-
tive function [107]. In mouse models with LPS-induced 
neuroinflammation, SS-31 significantly increased energy 
production and mitochondrial membrane potential in 
the hippocampus, indicating its potential to restore func-
tion in damaged neurons [105]. SS-31 inhibits activation 
of the NLRP3 inflammasome–caspase-1 pathway in the 
hippocampus following surgery or anesthesia, thereby 
reducing lesion-related cell death and neuroinflamma-
tion, rescuing neuronal damage and synaptic dysfunction, 
and alleviating cognitive impairment [65]. Furthermore, 
SS-31 promotes PHB2-mediated mitophagy activation, 
inhibiting mtDNA release, M1 microglial polarization, 
and inflammation via the cGAS–STING pathway, ulti-
mately restoring neurocognitive function in elderly mice 
after surgery [108].

Dexmedetomidine (Dex), is a highly selective α2 adr-
energic receptor agonist with sedative, anxiolytic, hyp-
notic, and analgesic properties that is commonly used 
in the induction and maintenance of general anesthe-
sia [109]. In recent years, studies have found that Dex 
has a positive effect on cognitive impairment, especially 
PND, which is expected to become an ideal drug for the 
treatment of PND. Clinical studies have found that the 
prophylactic use of low-dose Dex significantly reduces 
postoperative delirium in older patients after cardiac 
and noncardiac surgery [110]. In animal experiments, 
Chen et  al. found that Dex improved motor symptoms 
in Parkinson mice by enhancing PINK1/Parkin-induced 
mitophagy, improving mitochondrial function, and pro-
tecting dopaminergic neurons [111]. Suo and Wang 
found that Dex alleviated sevoflurane-induced neuro-
toxic effects by activating mitophagy in the hippocampus 
of rats and improved learning and memory ability in rats 
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[112], it provides a potential strategy for the treatment of 
PND.

Propofol is a general anesthetic widely used in the 
induction and maintenance of general anesthesia and 
sedation of regional anesthesia. Propofol produces seda-
tion, hypnosis, and amnesia effects by activating the 
inhibitory transmitter γ-aminobutyric acid (GABA) in 
the central nervous system [113]. Dai et  al. found that 
propofol could reduce the damage of mitochondria by 
inhibiting the PINK1/Parkin mitophagy pathway, and 
alleviate the impairment of learning and memory in 
sleep-deprived rats [114]. However, Liang et  al. found 
that propofol time-dependently decreased the expression 
levels of PINK1 mRNA and protein, inducing apoptosis 
in hippocampal neurons [115]. As early as 2015, Han 
et  al. suggested that repeated use of low-dose propofol 
had no apparent effect on cognitive function. However, 
repeated administration of propofol at recommended or 
higher doses caused a significant increase in the expres-
sion of apoptotic factors and pro-inflammatory cytokine 
in the hippocampus of neonatal rats, impairing cognitive 
function [116]. Therefore, more research is needed to 
explore the dose and timing of propofol administration to 
mitigate side effects and improve its role in the preven-
tion and treatment of PND.

In conclusion, various drugs have shown significant 
potential therapeutic effects in animal models by improv-
ing PND through modulation of mitophagy. For exam-
ple, sirolimus improves cognitive function by restoring 
mitophagy and reducing the accumulation of damaged 
mitochondria, and HNK reduces neuroinflammation by 
enhancing mitophagy and reducing oxidative stress. By 
reducing Aβ protein deposition and tau protein hyper-
phosphorylation, liraglutide enhances mitophagy and 
improves cognitive function. However, these strategies 
still face challenges in clinical application. Future studies 
need to further optimize drug dosage and administra-
tion time to improve treatment efficacy and reduce side 
effects. For example, the effects of the dose and timing 
of administration of propofol on cognitive function vary 
and require further investigation. In addition, long-term 
follow-up studies are needed to evaluate the durable 
effects of the drug and to consider the accessibility and 
safety of the drug, especially for older patients. Mean-
while, exploring the synergy between drugs, such as the 
combined use of rapamycin and Dex, may improve PND 
more effectively by enhancing mitophagy and inhibiting 
neuroinflammation.

Non‑pharmacological treatment strategies
Electroacupuncture (EA) is an innovative therapy that 
combines physical nerve stimulation with Traditional 
Chinese Medicine (TCM) acupuncture and is widely 

applied to treat various cognitive dysfunctions [117]. 
Preoperative EA therapy has been shown to reduce the 
incidence of PND and decrease levels of inflammatory 
markers in elderly patients [118]. Studies suggest that the 
mechanisms by which EA alleviates PND may involve 
neuroinflammation, oxidative stress, autophagy, and the 
microbiota–gut–brain axis [119]. In PND rat models, EA 
has been found to improve spatial memory by reducing 
mitochondrial damage from oxidative stress and increas-
ing mitophagy to prevent the buildup of damaged mito-
chondria [120]. Additionally, inhibiting ROS production 
and IL-1β expression has been shown to further improve 
spatial memory in these models [121].

Cognitive training (CT) is to improve cognitive func-
tion through the guidance of different cognitive domains 
such as memory, attention, execution and language 
[122]. Common CT methods include computerized CT 
(CCT), multimedia education, paper-and-pencil cog-
nitive training, memory training, and communication 
with patients [123]. CT can increase the density of dopa-
mine D1 receptors in the cortex and improve the capac-
ity of working memory [124]. At the same time, CT can 
also improve the cognitive reserve of patients [125] and 
reduce the incidence of PND [126]. In AD mice, repeated 
CT reduced glycogen synthase kinase-3β (gsk3β) activity, 
reduced phosphorylated tau deposition, and improved 
spatial memory [127]. However, more research is needed 
to determine whether CT can affect mitophagy to 
improve cognitive function.

Physical activity (PA) is widely regarded as beneficial for 
physical and mental health, and can significantly improve 
cognitive function [128]. Studies have shown that regular 
exercise before surgery and early postoperative exercise 
can significantly reduce the incidence of PND [129, 130]. 
PA can increase BDNF levels, increase hippocampal vol-
ume, and improve memory function [131]. PA can also 
affect the activation of microglia and astrocytes, reduce 
neuroinflammation, and enhance cognitive function 
in AD patients [132]. Continuous aerobic exercise for 
12 weeks can promote the level of mitophagy in the hip-
pocampus of APP/PS1 transgenic AD mice, clear dam-
aged or abnormal mitochondria, maintain mitochondrial 
protein homeostasis, and improve the learning and spa-
tial memory levels of mice [133]. Zhao et al. also found 
that PA can enhance PINK1/Parkin-mediated mitophagy 
activity by upregulating the SIRT1–FOXO1/3 axis, 
reduce Aβ protein deposition, and improve the learn-
ing and memory ability of AD mice [134]. These findings 
suggest that PA-activated mitophagy may be a promising 
strategy for the prevention of PND.

In summary, non-pharmacological strategies such as 
EA, CT, and PA show potential positive effects in the 
prevention and treatment of PND. For example, EA 



Page 10 of 13Feng et al. European Journal of Medical Research          (2025) 30:270 

modulates neuroinflammation and oxidative stress by 
physical nerve stimulation, increases mitophagy, and 
improves cognitive function; CT reduces the incidence of 
PND by enhancing cognitive reserve; PA improves cog-
nitive function by increasing BDNF levels and enhancing 
mitophagy. However, further optimization and long-term 
efficacy evaluation of these strategies need to be further 
investigated. The effects of different types and durations 
of CT and PA on PND need to be explored in the future 
and their long-term effects evaluated. At the same time, 
accessibility and safety of non-pharmacological strategies 
need to be considered. In addition, explore the synergy 
of non-pharmacological strategies with pharmacological 
treatments to more effectively improve PND.

Conclusion
PND is a common complication in elderly patients 
following surgery or anesthesia, with its underlying 
pathophysiological mechanisms primarily involving neu-
roinflammation, oxidative stress, insufficient energy sup-
ply, and neuronal apoptosis. Recent studies suggest that 
mitochondrial dysfunction plays a crucial role in the 
development of PND. Mitophagy, a key mechanism to 
maintain mitochondrial homeostasis, alleviates oxidative 
stress by clearing damaged mitochondria and protecting 
neuronal function. This review explores the relationship 
between PND and abnormal mitophagy, detailing the 
molecular mechanisms involved and potential interven-
tion strategies. Studies have indicated that the occurrence 
of PND is closely related to the balance of mitophagy 
and the accumulation of damaged mitochondria. In the 
PND model, NLRP3 inflammasome activation inhib-
its mitophagy, exacerbating mitochondrial damage, 
while enhancing mitophagy alleviates inflammation 
and improves cognitive function. Furthermore, proteins 
such as SNAP25, pyroptosis mediators, and neurotoxic 
proteins play pivotal roles in PND pathogenesis and are 
linked to mitophagy regulation. Although some pharma-
cological and non-pharmacological interventions have 
demonstrated potential in improving PND by regulating 
mitophagy in animal models, their clinical efficacy and 
safety remain to be fully validated. Future research should 
focus on identifying the specific regulatory pathways of 
mitophagy in PND and exploring the temporal interplay 
of various pathological processes during its pathogenesis. 
Additionally, more clinical trials are necessary to evaluate 
the safety and efficacy of current intervention strategies 
and to develop more effective prevention and treatment 
approaches for PND.
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