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Abstract 

Background Surgery offers the potential for a radical cure and prolonged survival in individuals diag-
nosed with esophageal squamous cell carcinoma (ESCC). However, survival rates exhibit significant variability 
among patients. Accurately assessing surgical outcomes remains a critical challenge. This study aimed to evalu-
ate the predictive value of preoperative radiomics and the prognostic nutritional index for individuals with ESCC 
and to develop a comprehensive model for estimating postoperative overall survival (OS) in these patients.

Methods A retrospective analysis was conducted on 466 patients with ESCC from two medical centers. The dataset 
was randomly divided into a training cohort (TC, hospital 1, 246 cases), an internal validation cohort (IVC, hospital 
1, 106 cases), and an external validation cohort (EVC, hospital 2, 114 cases). Radiological features were extracted 
after delineating the region of interest, followed by the application of the least absolute shrinkage and selection 
operator (LASSO) regression to identify optimal radiomics features and compute the radiomics score (RS). Independ-
ent prognostic factors identified via Cox regression analysis were incorporated with the RS to construct a combined 
nomogram. The predictive performance of the model was evaluated using the concordance index, time-dependent 
receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis.

Results The predictive model, which integrated preoperative radiomics, the prognostic nutritional index, and tumor–
node–metastasis (TNM) staging to estimate the 3 year OS rate, achieved area under the ROC curve (AUC) values 
of 0.812, 0.786, and 0.810 in the TC, IVC, and EVC, respectively, demonstrating excellent prognostic accuracy. These 
values surpassed the AUCs of the TNM staging model in the TC, IVC, and EVC, which were 0.717, 0.612, and 0.699, 
respectively. The combined model’s concordance indexes in the TC, IVC, and EVC were 0.780, 0.760, and 0.764, respec-
tively. Calibration and decision curves highlighted the nomogram’s superior calibration and clinical utility.

Conclusion This study developed a predictive model by combining radiomics with the prognostic nutritional index, 
enabling the estimation of OS in postoperative patients with ESCC. This model holds promise as a tool for preopera-
tive risk stratification.
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Introduction
Esophageal carcinoma (EC) ranks among the deadli-
est malignancies globally, with the majority of individu-
als in Asia being affected by squamous cell carcinoma 
[1, 2]. Early-stage EC is typically asymptomatic, result-
ing in numerous patients being diagnosed at advanced 
or late stages of the disease during their initial medical 
evaluation [3]. Multimodal therapeutic strategies, such 
as surgical intervention combined with chemotherapy 
or chemoradiotherapy, constitute the standard treat-
ment regimen, offering the best prospects for resectable 
cancers. However, the prognosis for patients aiming for 
curative outcomes remains poor. The 5 year overall sur-
vival (OS) rate stands at 45.0–46.5%, while the median 
survival duration following disease progression is merely 
13 months [4, 5]. Currently, clinical tumor–node–metas-
tasis (TNM) staging is instrumental in guiding thera-
peutic decisions. Nonetheless, its predictive accuracy 
for concurrent pathological staging in early-stage can-
cer is suboptimal, and certain limitations are evident in 
its prognostic utility [6, 7]. Thus, identifying novel and 
dependable biomarkers to assess tumor heterogene-
ity, evaluate treatment efficacy, and enhance prognostic 
accuracy is imperative.

Radiological features derived from contrast-enhanced 
computed tomography images offer significant data 
for predictive models. Non-invasive radiological tech-
niques, including computed tomography (CT), magnetic 
resonance imaging, and positron emission tomogra-
phy, enable the extraction of high-throughput quantita-
tive features from images, thereby supporting diagnosis, 
evaluation of treatment response, and prognosis in vari-
ous cancers, including EC [8–10]. Radiomics has dem-
onstrated utility in prognostic analysis, facilitating the 
prediction of postoperative recurrence in EC patients 
who have achieved a pathological complete response 
following neoadjuvant chemoradiotherapy, lymph node 
metastasis, and resectability [11]. Furthermore, radiom-
ics-based nomograms have shown potential in predict-
ing radiation pneumonitis, assessing the expression of 
programmed death-ligand 1, and evaluating treatment 
outcomes for radiotherapy and chemotherapy. Such 
tools can assist in identifying patients who derive limited 
benefit from radiotherapy and chemotherapy, as well as 
in determining the efficacy of neoadjuvant radiotherapy 
and chemotherapy [11, 12]. Additionally, the integration 
of CT-based radiomics with clinical factors has further 
improved the predictive performance of ESCC [13].

In addition to radiomics, which extracts features from 
local tumors, hematological indicators are instrumental 
in evaluating the systemic inflammatory state, a factor 
associated with recurrence and prognosis in various can-
cers [14]. Previous studies have highlighted the impact of 

the prognostic nutritional index (PNI) on recurrence and 
prognosis in patients with EC [15, 16]. Although previ-
ous studies have examined the effects of radiomics and 
hematological parameters on prognosis, limited investi-
gations have combined these factors to predict survival 
outcomes. Consequently, this multi-institutional study 
aimed to construct a combined prognostic model for 
patients with ESCC undergoing radical surgery by inte-
grating PNI with CT radiological features and validating 
the model’s effectiveness.

Material and methods
Information collection and follow‑up
According to the guidelines established by the Chinese 
Society of Clinical Oncology, surgical treatment is prior-
itized for individuals diagnosed with clinical stage cT1b-
2N0M0, regardless of lesion length and differentiation 
degree [17].

This study involved 446 patients with ESCC who 
underwent radical surgical intervention at the First Affili-
ated Hospital of Anhui Medical University and the Fudan 
University Shanghai Cancer Center between June 2010 
and June 2023. Preoperative chest CT images of EC were 
simultaneously collected. The investigation was con-
ducted in adherence to the World Medical Association 
Declaration of Helsinki. Approval for this investigation 
was granted by the Ethics Committee of the First Affili-
ated Hospital of Anhui Medical University (Approval 
Number: quick-PJ 2024-04-57). As the study was retro-
spective in nature, the requirement for informed consent 
from patients was waived.

The selection criteria included: (1) individuals aged 
18 to 80  years; (2) histological confirmation of ESCC 
obtained through biopsy; (3) diagnosis of non-metastatic 
EC using preoperative standard contrast-enhanced CT; 
and (4) complete availability of clinical and pathological 
characteristics. All patients were staged in accordance 
with the eighth edition of the TNM staging system of the 
American Joint Committee on Cancer for EC [18]. The 
exclusion criteria were defined as follows: (1) absence of 
clinical data, loss to follow-up, or suboptimal-quality CT 
images; (2) coexistence of other malignant tumors; and 
(3) patients who received preoperative chemotherapy, 
immunotherapy, or radiotherapy. A total of 352 individu-
als from the First Affiliated Hospital of Anhui Medical 
University were randomly allocated, at a ratio of 7:3, to 
the training cohort (TC, N = 246) and the internal valida-
tion cohort (IVC, N = 106). Additionally, data from 114 
patients at the Fudan University Shanghai Cancer Center 
were used for the external validation cohort (EVC). The 
patient recruitment and selection process is illustrated in 
Fig. 1.
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All clinical characteristics in the preoperative stage, 
including age, gender, body mass index, smoking sta-
tus, alcohol consumption, differentiation status, tumor 
location, TNM stage, surgical approach, and PNI, were 
retrieved. The PNI was determined using the formula: 
serum albumin + 5 × total lymphocyte count. CT exami-
nations were conducted three weeks prior to surgery, 
while hematological tests were performed one week 
before the procedure.

During the postoperative period, follow-up was con-
ducted at intervals of 3 to 6 months from the 1st to the 
2nd year, every 6  months from the 3rd to the 5th year, 
and annually thereafter. The follow-up endpoint was 
established as June 1, 2024. OS was defined as the time 
from surgical intervention to death from any cause. Post-
operative follow-up included esophageal radiography, 
contrast-enhanced CT scans, and routine hematological 
examinations.

Delineation of the region of interest (ROI) and derivation 
of radiomics features (RFs)
This study acquired arterial phase CT images of preop-
erative patients with ESCC from two medical center sys-
tems, employing a 5 mm slice interval. Details regarding 
the scanner equipment and the protocol for intravenous 
contrast agent administration are provided in Table  S1. 
In quantitative imaging analysis, the primary tumor 

was defined as a lesion with esophageal wall thickening 
exceeding 5  mm or a lumen occlusion diameter greater 
than 1  cm. Intraluminal gas and oral contrast agents 
were disregarded, and the lesion was selected as the ROI, 
while normal structures and metastatic lymph nodes 
were excluded [19]. Patient information was anonymized, 
and the initial tumor segmentation was performed by 
two radiologists with over 6 years of professional experi-
ence. The segmentation was subsequently reviewed and 
adjusted as necessary by a radiologist with more than 
12 years of experience. None of the physicians had access 
to patient-specific information. ROI delineation was car-
ried out using 3D Slicer (version 5.7.0). A total of 1409 
RFs were extracted from the ROIs using PyRadiomics 
(version 3.6.2). The RFs, derived through wavelet filter-
ing, included first-order statistics, neighboring gray-tone 
difference matrix (NGTDM), gray-level size zone matrix 
(GLSZM), gray-level dependence matrix (GLDM), gray-
level run-length matrix (GLRLM), gray-level co-occur-
rence matrix (GLCM), and shape features.

The RF values underwent normalization through 
Z-score analysis, with their reproducibility assessed 
using the intraclass correlation coefficient (ICC) evalu-
ation. Features identified with a P-value below 0.05 and 
an ICC ≥ 0.8 were chosen for subsequent analysis. There-
after, the least absolute shrinkage and selection opera-
tor (LASSO) regression was implemented in R software 
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(version 4.4.1) to identify features associated with OS, 
and optimal parameters (λ) were determined via tenfold 
cross-validation. During the feature selection procedure, 
LASSO regression employed L1 regularization, which 
utilized gradient-based optimization to refine param-
eter coefficients, balancing their respective weights and 
mitigating overfitting and collinearity issues. Finally, 
the selected features were assigned weights and linearly 
combined through non-zero coefficients derived in this 
process, enabling the calculation of the radiomics score 
(rad-score) for each patient.

Establishment and validation of the nomogram 
for the combined model
Prognostic factors associated with OS were identified 
using univariate Cox regression analysis. Subsequently, 
these parameters were analyzed through multivari-
ate Cox regression analysis, with factors demonstrating 
P < 0.05 considered independent prognostic factors (IPFs) 
for OS. Following this, a nomogram was constructed by 
integrating the rad-score and IPFs. The clinical applica-
bility and predictive accuracy of the model were evalu-
ated through calibration curves, time-dependent area 
under the curve (AUC), and decision curve analysis 
(DCA).

Statistical analysis
Statistical analyses were performed using SPSS software 
(version 29.0, International Business Machines Corpo-
ration, Armonk, NY, USA), R software (version 4.4.1, 
R Foundation for Statistical Computing, Vienna, Aus-
tria), and Python software (version 3.6.7, http:// www. 
python. org/). The cut-off values were determined with 
X-tile software (version 3.6.1, Yale University School 
of Medicine, New Haven, USA). Patient categories and 
continuous baseline characteristics were represented as 
frequency (percentage) and mean ± standard deviation, 
respectively. Survival curves were constructed using the 
Kaplan–Meier (KM) method, and survival differences 
were assessed via the Log-rank test. Univariate and mul-
tivariate analyses were conducted through the Cox pro-
portional hazards regression model to identify factors 
independently associated with survival. A P-value < 0.05 
was regarded as statistically significant.

Results
Patient characteristics
This study included 352 participants from the First 
Affiliated Hospital of Anhui Medical University and 
114 patients from the Shanghai Cancer Center of Fudan 
University. Of these, the TC group comprised 246 cases, 

the IVC group included 106 cases, and the EVC group 
consisted of 114 cases. The median follow-up duration 
for the First Affiliated Hospital of Anhui Medical Uni-
versity was 55 months (range: 3–141 months), while for 
the Shanghai Cancer Center of Fudan University, it was 
51 months (range: 3–156 months). By June 1, 2024, 166 
patients from Institution 1 and 68 patients from Insti-
tution 2 had passed away. Table 1 demonstrates that no 
significant differences in clinical pathological data were 
observed between the three cohorts.

Univariable analysis and multivariable analysis
After excluding redundant RFs and those with unsatisfac-
tory ICC values, 1,078 of the 1,409 features were retained 
for LASSO regression analysis, resulting in the selection 
of seven RFs: Original_shape_least axis length, origi-
nal_shape_minor axis length, original_shape_sphericity, 
logarithm_first order_maximum, square root_first order_
maximum, square root_glcm_maximum probability, and 
wavelet-LLL_glszm_gray level non-uniformity (Fig. 2). By 
integrating the rad-score with clinical features and con-
ducting an analysis via X-tile software, the optimal cut-
off value for the rad-score was identified as −0.45, while 
that for PNI was determined to be 47.1. The Schoenfeld 
residual plot indicated that the PH assumption of the 
Cox regression model was valid (P > 0.05, Fig. 3). The uni-
variate analysis of the TC revealed that age (hazard ratio 
[HR]: 0.649, 95% confidence interval CI 0.426–0.988, 
P < 0.001), TNM stage (HR: 0.317, 95% CI 0.212–0.474, 
P < 0.001), rad-score (HR: 3.080, 95% CI 2.024–4.687, 
P < 0.001), and PNI (HR: 1.729, 95% CI 1.171–2.552, 
P = 0.006) were significant prognostic factors for OS 
(Table  2). The multivariate analysis of the TC identified 
TNM stage (HR: 0.404, 95% CI 0.267–0.612, P < 0.001), 
rad-score (HR: 1.849, 95% CI 1.258–2.716, P = 0.002), and 
PNI (HR: 1.576, 95% CI 1.058–2.348, P = 0.025) as IPFs 
for OS. KM survival analysis demonstrated significant 
differences in OS based on rad-score, PNI, and TNM 
stage within the TC, IVC, and EVC groups (Fig. 4). Indi-
viduals exhibiting high rad-score, high PNI, and stage I–
II tumors displayed markedly higher 1-, 3-, and 5 year OS 
rates.

Establishment of models to predict OS
This study utilized rad-score, PNI, and TNM to con-
struct a model for OS prediction. The c-index values 
of the TNM staging model in the TC, IVC, and EVC 
cohorts were 0.635 (95% CI 0.595–0.675), 0.611 (95% CI 
0.529–0.693), and 0.607 (95% CI 0.029–1.185), respec-
tively. In comparison, the c-index values of the integrated 
model in the TC, IVC, and EVC cohorts were 0.780 (95% 

http://www.python.org/
http://www.python.org/
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CI 0.741–0.819), 0.760 (95% CI 0.695–0.825), and 0.764 
(95% CI 0.710–0.818), respectively. These results sug-
gest that the c-index of the combined model consistently 
exceeds that of the TNM staging model across the TC, 

IVC, and EVC. In the TC cohort, the AUC values of the 
combined model for predicting the 1-, 3-, and 5 year OS 
rates were 0.859, 0.812, and 0.793, respectively, while 
those of the TNM staging model were 0.760, 0.717, and 

Fig. 2 In the TC, radiomic features linked to OS were identified via the LASSO regression model. a: The cross-validation curve. b: Coefficient curves 
for radiomic features

Fig. 3 Schoenfeld residual plot of the Cox proportional-hazards regression model. BMI Body mass index; PNI Prognostic nutritional index
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0.693, respectively ((Figs.  5a, d). In the IVC cohort, the 
AUC values of the combined model for forecasting the 
1-, 3-, and 5 year OS rates were 0.780, 0.786, and 0.792, 
respectively, whereas the corresponding values for the 
TNM staging model were 0.705, 0.612, and 0.621 (Fig. 5b, 
e). In the EVC cohort, the AUC values of the combined 
model for predicting the probabilities of 1-, 3-, and 5 year 
OS (0.809, 0.810, and 0.792, respectively) surpassed 
those of the TNM staging model (0.690, 0.699, and 0.678, 
respectively) (Fig. 5c, f ). The AUCs of individual radiom-
ics features and the PNI model for predicting postopera-
tive survival were shown in Figure S1. Across all three 
cohorts, the combined model’s AUC values for forecast-
ing the 1-, 3-, and 5  year OS rates consistently outper-
formed those of the TNM staging model. A nomogram 
was developed incorporating rad-score, PNI, and TNM 
(Fig. 6a). The calibration curves for OS showed that the 

predicted 1-, 3-, and 5-year OS rates closely aligned with 
the observed values (Fig. 6b–d). The DCA of the predic-
tive model indicated a positive net benefit (Fig. 6e).

Discussion
Conducting an individualized risk–benefit analysis 
facilitates the optimization of management decisions 
for resectable EC. Enhancing the accuracy of prognosis 
assessment remains a pivotal step. Preliminary imaging 
studies have demonstrated that RFs provide additional 
prognostic value [20, 21]. In this study, seven RFs strongly 
associated with OS were identified. Among them, GLCM 
is the most commonly observed statistical feature, while 
GLSZM captures variations in gray-level intensity values 
within the image [22, 23]. Relatively homogeneous, low-
gray-level EC lesions have been linked to improved long-
term survival. Other RFs considered in this study include 

Fig. 4 TC (a, d, and g), IVC (b, e, and h), and EVCs’ (c, f, and i) KM survival curves. a, b, and c: KM survival curve based on rad-score; d, e, and f: KM 
survival curve based on PNI; g, h, and i: KM survival curve based on TNM
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those related to least axis length, minor axis length, 
sphericity, and additional first-order features. Numerous 
studies have confirmed that radiomics can be employed 
to identify individuals at elevated risk of EC and refine 
clinical treatment strategies [24–26]. This investigation 
demonstrated that patients in the high rad-score cohort 
exhibited significantly longer median OS compared to 
those in the low rad-score cohort. Furthermore, it effec-
tively stratified the pretreatment risk of ESCC patients.

The tumor microenvironment plays a pivotal role in 
facilitating tumor initiation and progression [27]. The cat-
abolic effects of systemic inflammation and malnutrition 
on host metabolism promote tumor growth, exacerbate 
the vicious cycle of immune-nutritional deficiencies, and 
contribute to the worsening of cancer [28]. Consequently, 
systemic inflammation and malnutrition in tumors have 
garnered increasing attention from researchers [29]. Li 
et al. conducted a meta-analysis of nine studies to inves-
tigate the prognostic factors influencing ESCC. The find-
ings revealed that a decreased PNI before treatment was 

strongly associated with recurrence-free survival and 
OS [30]. Zou et  al. identified a significant correlation 
between low PNI levels and tumor stage in patients with 
EC, further corroborating the prognostic significance of 
PNI [31]. In this study, the optimal cut-off value of PNI 
was determined to be 47.1. The median OS in the high 
PNI cohort was significantly higher compared to the low 
PNI cohort, consistent with the findings of numerous 
prior studies [32–34].

Previous research has demonstrated that models inte-
grating clinical factors and RFs achieve greater accuracy 
in prognostic assessments compared to clinical models 
alone [35]. In this study, the combined clinical-radiom-
ics nomogram was shown to outperform the standalone 
TNM model in predicting OS, with C-index values for 
the TC, IVC, and EVCs recorded at 0.780, 0.760, and 
0.764, respectively. The predictive outcomes of the com-
bined model exhibited strong concordance with observed 
survival data, providing substantial clinical benefits to 
patients.

Fig. 5 The predictive performances of the three models for patients with ESCC. ROC curves demonstrate the predictive performances of the TC (a 
and d), IVC (b and e), and EVC models (c and f). a, b, and c were combined models; d, e, and f were TNM prediction models
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This study has several limitations. Firstly, only patients 
diagnosed with ESCC were included, which restricts the 
applicability of the model to cases of adenocarcinoma. 
Secondly, patients who underwent neoadjuvant chemo-
radiotherapy prior to surgery were not incorporated. In 
clinical practice, a significant proportion of patients are 
at relatively advanced stages and receive neoadjuvant 
treatment before surgery. Thus, the applicability of this 
study to such populations remains unclear. Thirdly, data 
from only two centers were utilized. The dataset used to 
construct the predictive model was relatively small and 
geographically limited, inevitably introducing bias into 
the results. Consequently, expanding the scale and scope 

of research centers is necessary to further evaluate the 
feasibility of the predictive model.

This study represents the first attempt to integrate 
the inflammatory factor PNI with radiomics to evaluate 
the postoperative prognosis of patients with ESCC. The 
findings indicate that a high PNI is correlated with an 
improved prognosis. The nomogram developed based on 
PNI and radiomics demonstrates robust predictive accu-
racy for assessing the postoperative prognosis of ESCC 
patients. Furthermore, as a straightforward and practical 
tool, it holds significant potential for enhancing prog-
nosis evaluation and guiding treatment decisions. This 
preliminary investigation offers valuable insights and 

Fig. 6 In the TC, the model’s efficacy and verification for forecasting OS. The nomogram in the combined model (a), the calibration curve 
of the nomogram for predicting the 1- (b), 3- (c), and 5 year (d) OS. DCA for 3 year OS in the nomogram model (e)
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Table 1 The clinical baseline characteristics of the patients

Variable Training cohort(n = 246) Internal validation cohort 
(n = 106)

External validation 
cohort(n = 114)

P‑value

Age 0.617

  < 60 73 29 38

  ≥ 60 173 77 76

Gender, case (%)

 Male 191 86 98 0.176

 Female 55 20 16

Body mass index (kg/m2) 0.656

  < 18.5 36 12 14

  ≥ 18.5 210 94 100

Smoking 0.656

 Yes 115 43 74

 No 131 63 40

Alcohol 0.488

 Yes 140 53 63

 No 106 53 51

Differentiation (Well + moderate vs. poor) 0.423

 Well + moderate 179 81 90

 Poor 67 25 24

Location 0.454

  Upper + middle 183 79 78

 Lower 63 27 36

TNM stage (I + II vs. III + IV) 0.228

 T1 + 2 181 73 74

 T3 + 4 65 33 40

Operation (thoracoscopic vs. non-thoracoscopic) 0.149

 Yes 114 44 62

 No 132 62 52

Table 2 OS-related univariate and multivariate analyses in the TC

Univariate analysis Multivariate analysis

HR 95% CI P‑value HR 95% CI P‑value

Age (< 60 vs. ≥ 60) 0.649 0.426–0.988 0.044 0.706 0.461–1.080 0.109

Sex (male vs. female) 1.324 0.980–1.788 0.067

Body mass index (kg/m2, < 18.5 vs. ≥ 18.5) 1.147 0.737–1.784 0.544

Smoking (no vs. yes) 1.218 0.847–1.753 0.287

Alcohol (no vs. yes) 0.968 0.671–1.397 0.864

Tumor location (upper + middle vs. lower) 1.182 0.784–1.783 0.424

Differentiation (Well + moderate vs. poor) 0.913 0.610–1.365 0.656

TNM stage (I + II vs. III + IV) 0.317 0.212–0.474  < 0.001 0.404 0.267–0.612  < 0.001

Operation (thoracoscopic vs. non-thoracoscopic) 1.037 0.723–1.489 0.842

Rad-score (≤ 0.22 vs. > 0.22) 3.080 2.024–4.687  < 0.001 1.849 1.258–2.716 0.002

PNI (≤ 47.1 vs. > 47.1) 1.729 1.171–2.552 0.006 1.576 1.058–2.348 0.025
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establishes a foundation for future large-scale retrospec-
tive and prospective clinical trials.
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