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Abstract 

Background Renal replacement therapy (RRT) plays a crucial role in managing acute pancreatitis (AP). This study 
aimed to develop and evaluate predictive models for determining the need for RRT among patients with AP 
in the intensive care unit (ICU).

Methods A retrospective selection of patients with AP was made from the Medical Information Mart for Intensive 
Care IV (MIMIC-IV, version V2.0). The cohort was randomly divided into a training set (447 patients) and a validation 
set (150 patients). The least absolute shrinkage and selection operator (LASSO) regression cross-validation method 
was utilized to identify key features for model construction. Using these features, four machine learning (ML) algo-
rithms were developed. The optimal model was visualized and clarified using SHapley Additive exPlanations (SHAP) 
and presented as a nomogram.

Results The mean age of the cohort was 59.17 years, with an average Acute Physiology and Chronic Health Evalu-
ation II (APACHE II) score of 17.55. Acute kidney injury (AKI) was observed in 52.43% of patients with AP, and 9.05% 
required RRT. After feature selection, four of 41 clinical factors were ultimately chosen for use in model construction. 
The Lasso-Logistic Regression (Lasso-LR) model showed a high discriminative ability to predict RRT risk in patients 
with AP, with an area under the receiver operating characteristic (AUROC) of 0.955 (95% CI 0.924–0.987) in the training 
set. In the validation set, it maintained its discriminative performance, achieving an AUROC of 0.985 (95% CI 0.970–
1.000). Calibration curves indicated an excellent fit in both sets (Brier scores: 0.039 and 0.032, respectively), suggesting 
high consistency. Decision curve analysis (DCA) highlighted the Lasso-LR model’s significant clinical utility in predict-
ing RRT likelihood in patients with AP.

Conclusions Developed via the LASSO regression cross-validation method, the Lasso-LR model significantly excels 
in predicting the requirement for RRT in patients with AP, demonstrating its potential for clinical application.
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Introduction
Acute pancreatitis (AP) is a frequently encountered 
clinical emergency, marked by the premature activa-
tion of pancreatic enzymes, self-digestion of the pan-
creas, and the ensuing local and systemic inflammatory 
responses [1]. Over the past few decades, the global inci-
dence rate of AP has varied between 4.9 to 73.9 cases 
per 100,000 individuals each year [2, 3], with the annual 
incidence demonstrating a rising trend [4, 5]. Although 
most patients with AP have a favorable prognosis, about 
20–30% of them evolve into severe acute pancreatitis 
(SAP) [6], which carries a mortality rate of 15–30% [1, 
7]. The kidneys, being among the organs most frequently 
compromised in SAP, often indicate an escalation in the 
severity of the condition and a decline in prognosis [8]. 
The early liberation of a substantial volume of inflam-
matory mediators in patients with AP can instigate a 
systemic inflammatory response syndrome and the infil-
tration of vital organs by inflammatory cells, thereby 
worsening organ damage and potentially leading to mul-
tiple organ dysfunction syndrome (MODS) [9].

To date, a myriad of therapeutic strategies targeting the 
pathogenesis of AP have been established [10]. In addi-
tion to pharmacotherapy, surgical, and interventional 
therapies, renal replacement therapy (RRT) plays an inte-
gral role in the treatment regimen. RRT has progressed 
beyond mere kidney function substitution, expanding 
its role to multiple organ support. It may confer benefits 
by regulating the internal environment and electrolyte 
balance, reducing toxins and inflammatory mediators, 
decreasing intra-abdominal pressure, mitigating edema, 
and thereby further protecting organ function, all of 
which are advantageous in treating patients with AP 
[11]. Despite these advancements, no unified interna-
tional guidelines or consensus exist regarding the opti-
mal timing and methodology for implementing RRT in 
patients with AP. Clinical decisions are often tailored 
to the patient’s unique circumstances, necessitating an 
assessment of vital signs, laboratory test results, organ 
function, and overall prognosis. Within this framework, 
effective machine learning (ML) predictive models can 
offer substantial decision-making support to clinicians 
[3]. Nevertheless, the current predictive models for AP 
largely focus on assessing severity [12, 13], mortality [14], 
and complications [15, 16], as well as determining the 
appropriate timing for surgery [17]. There remains a sig-
nificant gap in research regarding clinical risk prediction 
models specifically for RRT in AP patients.

To bridge this knowledge gap, we performed a retro-
spective analysis using the Medical Information Mart for 
Intensive Care IV (MIMIC IV, version V2.0) database to 
explore the risk factors that influence the requirement for 
RRT in patients with AP. Specifically, we employed four 

ML algorithms to create and validate early warning mod-
els for AP patients admitted to the intensive care unit 
(ICU) who might need RRT. Additionally, we developed 
and validated a user-friendly prognostic nomogram. 
The objective of this model is to lay the groundwork for 
timely RRT interventions for these patients, thus aiding 
physicians in making more informed RRT medical deci-
sions while considering the advantages, disadvantages, 
and the scarcity of medical resources.

Methods
Data source
The study’s data were obtained from the MIMIC-IV data-
base, developed by the Laboratory for Computational 
Physiology at the Massachusetts Institute of Technology 
(MIT). This open-access and free resource encompasses 
de-identified clinical information of patients admit-
ted to the ICU at Beth Israel Deaconess Medical Center 
(BIDMC) from 2008 to 2019 [18]. The database utiliza-
tion for this research has received approval from the 
Institutional Review Boards of BIDMC and MIT. Three 
of the authors have successfully completed the CITI Pro-
gram’s certification process, granting them access to the 
database. A rigorous de-identification process of patient 
information within the MIMIC database ensures patient 
privacy, precluding the need for additional informed con-
sent. This investigation was conducted as a retrospective 
analysis and was aligned with the principles of the Trans-
parent Reporting of a Multivariate Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) statement 
[19].

Study population
The inclusion criteria for this study were as follows: (1) 
Patients with a primary diagnosis of AP in the MIMIC-
IV database according to the International Classifica-
tion of Diseases, Ninth Edition (ICD-9 code 577.0) and 
Tenth Edition (ICD-10 code K85%). (2) For patients with 
multiple admissions to the ICU, only the first admission 
record is considered. The exclusion criteria included: 
(1) age < 18  years; (2) patients not admitted to the ICU; 
(3) patients with a clinical data missing rate exceeding 
20%. Ultimately, a total of 597 patients diagnosed with 
AP were included. The study cohort was subsequently 
divided, in a random manner, into a training set of 447 
patients and a validation set of 150 patients, maintaining 
a training-to-validation ratio of 3:1.

Variable extraction
This investigation employed PostgreSQL software (ver-
sion V14.5-1) and Navicat Premium 15 to retrieve and 
process data from the MIMIC-IV database. The dataset 
covered demographic details, disease severity scores, 
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laboratory results, comorbid conditions, and therapeu-
tic intervention records. Our predictive model focused 
exclusively on clinical and lab data captured within the 
first 24  h of ICU admission, identifying comorbidities 
with ICD-9/10 coding.

For data extraction, we aligned with established 
research, prioritizing clinical relevance and data avail-
ability. Demographic information such as age and sex 
at the time of hospital admission, vital signs including 
mean arterial pressure (MAP), and severity scores from 
the Sequential Organ Failure Assessment (SOFA) and 
the Acute Physiology and Chronic Health Evaluation II 
(APACHE II) were collated. Laboratory data included 
white blood cell (WBC) count, hemoglobin levels, plate-
let count, red cell distribution width (RDW), and con-
centrations of alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), bilirubin, anion gap, bicarbo-
nate, glucose, creatinine, blood urea nitrogen (BUN), pro-
thrombin time, and electrolytes such as calcium, sodium, 
chloride, potassium, magnesium, and phosphorus.

We also documented comorbidities including obesity, 
hypertension, diabetes, cerebral infarction, cirrhosis, 
atrial fibrillation, congestive heart failure (CHF), chronic 
obstructive pulmonary disease (COPD), malignant 
tumor, septic shock, acute kidney injury (AKI), chronic 
kidney disease (CKD), depression, delirium, and oliguria. 
Therapeutic measures in the dataset involved the admin-
istration of norepinephrine, the application of mechani-
cal ventilation (MV), and RRT.

Statistical analysis
In this study, data management and analysis were per-
formed using Stata software (version 14.0) and R (version 
4.2.3), setting the threshold for statistical significance at 
P < 0.05. For variables with less than 20% missing data, 
multiple imputation was performed using the ’mice’ 
package in the R programming language to estimate the 
missing values. Continuous variables conforming to a 
normal distribution were presented as the mean ± stand-
ard deviation (SD) and were compared using the inde-
pendent samples t-test. Continuous variables not 
adhering to a normal distribution were described by 
the median and interquartile range and were analyzed 
using the Mann–Whitney U test. Categorical variables 
were represented by frequency and percentage and were 
examined for differences using the Chi-square test or 
Fisher’s exact test, as appropriate.

To reduce the potential for overfitting, the Least Abso-
lute Shrinkage and Selection Operator (LASSO) regres-
sion model, in conjunction with tenfold cross-validation, 
was employed for key feature selection in this study. 
Additionally, fivefold cross-validation and grid search 
techniques were combined to refine hyperparameters 

within the training dataset, thus improving the model’s 
assessment performance. Following the selection of fea-
tures, four distinct prediction models were constructed 
for subsequent analysis and validation: Lasso-Logistic 
Regression (Lasso-LR) model, Random Forest (RF), 
eXtreme Gradient Boosting (XGBoost), and Support 
Vector Machine (SVM).

The validation dataset was utilized to conduct a com-
prehensive assessment of the predictive models. The 
discriminative ability was quantified by the receiver oper-
ating characteristic (ROC) curve and the area under the 
ROC curve (AUROC). Model accuracy was determined 
through calibration curve analysis, and clinical utility 
was evaluated by decision curve analysis (DCA). Among 
the models, the Lasso-LR model demonstrated superior 
performance, integrating these metrics. SHapley Addi-
tive exPlanations (SHAP) were subsequently employed 
to enhance model interpretability. The findings of the 
Lasso-LR model were finally illustrated through a nomo-
gram, designed to aid comprehension and application by 
clinical decision-makers.

Results
Patient characteristics
Figure  1 presents the composition of the study cohort, 
comprising 597 patients with AP, stratified into a train-
ing set (447 individuals) and a validation set (150 indi-
viduals). The cohort had a mean age of 59.17  years 
(SD = 17.94) and an average APACHE II score of 17.55 
(SD = 8.05). AKI was present in 52.43% of the patients 
(313 individuals), and RRT was necessitated in 9.05% 
(54 individuals). Demographic and clinical variables 
between the training and validation sets were compared, 
as demonstrated in Table  1. Apart from a pronounced 
incidence of delirium in the validation group, the com-
parison revealed no significant differences in other vari-
ables between the groups.

Feature selection
Employing the glmnet package in R, a LASSO regres-
sion analysis with tenfold cross-validation was utilized to 
predict the necessity for RRT in patients with AP, consid-
ering 41 distinct features. As depicted in Fig. 2, the opti-
mal lambda (λ) value of 0.055 was determined, leading 
to the identification of four principal predictive factors: 
the SOFA score, serum creatinine levels, the presence of 
oliguria on the first day, and the administration of nor-
epinephrine during hospitalization.

Models’ construction and validation
The four identified features were incorporated into vari-
ous predictive models, including Lasso-LR, RF, XGBoost, 
and SVM. A fivefold cross-validation approach was 
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utilized for parameter refinement, and the models under-
went several iterations of training to ascertain the opti-
mal configuration. The detailed performance metrics of 
the machine learning models across the training and vali-
dation sets are presented in Table 2.

All models demonstrated good AUROC performance, 
particularly in the training set, where both the Lasso-LR 
and SVM achieved an AUROC value of 0.955, indicating 
similar performance. In terms of sensitivity, all models 
performed comparably in the training set, with the RF 
model exhibiting the highest sensitivity at 90%, while the 
other models had a sensitivity of 87.5%. Regarding speci-
ficity, Lasso-LR and SVM achieved the highest speci-
ficity at 95.3% and 94.8%, respectively, reflecting their 
efficiency in identifying negative samples. In terms of 
accuracy, Lasso-LR and SVM reached accuracy rates of 
94.6% and 94.2%, respectively, showcasing strong predic-
tive capability.

In the validation set, the Lasso-LR model continued 
to exhibit excellent performance, achieving an AUROC 
value of 0.985 (95% CI: 0.970–1.000), as shown in Fig. 3. 
The sensitivity for Lasso-LR was 85.7%, specificity was 
95.6%, accuracy was 94.7%, and the Kappa value was 
0.721, indicating good classification consistency. The 
SVM’s performance was similar to that of Lasso-LR, 
with an AUROC value of 0.984 (95% CI: 0.967–1.000), 
maintaining high levels of sensitivity and specificity. 
The RF model demonstrated a sensitivity of 100% in the 

validation set, indicating it captured all positive sam-
ples; however, its specificity was slightly lower at 93.4%. 
The XGBoost model had an AUROC value of 0.964 (95% 
CI: 0.935–0.993), with both sensitivity and specificity at 
85.7% and 95.6%, respectively. All models maintained 
accuracy rates above 94% in the validation set, indicating 
their good generalization ability on unseen data.

The calibration curve in Supplementary Fig.  1 con-
firmed the predictive accuracy of the models, with Lasso-
LR showing superior calibration accuracy and a Brier 
score of 0.032. The DCA presented in Supplementary 
Fig.  2 indicated that, except for the XGBoost model, all 
other models demonstrated strong clinical utility.

In summary, the Lasso-LR model exhibited superior 
performance in AUROC, sensitivity, specificity, and accu-
racy, alongside favorable results in its calibration curve 
and DCA. Therefore, Lasso-LR was identified as the best 
predictive model.

Model interpretations
The SHAP method provides a comprehensive and trans-
parent approach for interpreting predictive models, 
ensuring the accurate and consistent quantification of 
each feature’s contribution to prediction outcomes as 
SHAP values. Higher SHAP values indicate a stronger 
positive correlation with the likelihood of requiring RRT. 
Figure  4 illustrates the impacts of four distinct features 
on prediction outcomes within the Lasso-LR model. The 

Fig. 1 Flow diagram of this study. MIMIC-IV Medical Information Mart for Intensive Care IV, ROC Receiver Operating Characteristic, AUROC Area 
Under the Receiver Operating Characteristic Curve, Lasso-LR Lasso-Logistic Regression, XGBoost eXtreme Gradient Boosting, SVM Support Vector 
Machine
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Table 1 The baseline characteristics of acute pancreatitis

SOFA Sequential Organ Failure Assessment, APACHE II Acute Physiology and Chronic Health Evaluation II, MAP Mean Arterial Pressure, WBC White Blood Cell, RDW 
Red Cell Distribution Width, ALT Alanine Aminotransferase, AST Aspartate Aminotransferase, BUN Blood Urea Nitrogen, CHF Congestive Heart Failure, COPD Chronic 
Obstructive Pulmonary Disease, AKI Acute Kidney Injury, CKD Chronic Kidney Disease, RRT  Renal Replacement Therapy

Characteristic Total
(n = 597)

Training set
(n = 447)

Validation set
(n = 150)

t/Z/χ2 P value

Age (years) 59.17 ± 17.94 59.40 ± 17.80 58.47 ± 18.37 0.550 0.582

Gender, n (%)

 Female 238 (39.87) 177 (39.60) 61 (40.67) 0.054 0.817

 Male 359 (60.13) 270 (60.40) 89 (59.33)

SOFA score 4.00 (2.00, 7.00) 4.00 (2.00, 7.00) 4.00 (2.00, 7.00) 0.114 0.909

APACHE II score 17.55 ± 8.05 17.42 ± 7.86 17.95 ± 8.60 − 0.698 0.485

MAP (mmHg) 89.72 ± 19.76 89.65 ± 19.37 89.93 ± 20.93 − 0.148 0.882

Laboratory tests

WBC (×  109/L) 12.60 (8.80, 17.60) 12.60 (8.80, 17.40) 12.65 (8.90 18.50) − 0.502 0.616

Hemoglobin (g/L) 119.68 ± 25.56 119.74 ± 25.79 119.50 ± 24.95 0.100 0.921

Platelet (×  109/L) 207.00 (151.00, 289.00) 205.00 (148.00, 282.00) 210.00 (156.00, 307.00) − 0.722 0.471

RDW (%) 14.73 ± 1.83 14.67 ± 1.74 14.90 ± 2.07 − 1.349 0.178

ALT (U/L) 54.00 (25.00, 158.00) 50.00 (25.00, 151.00) 62.00 (27.00, 174.00) − 0.855 0.393

AST (U/L) 71.00 (35.00, 170.00) 76.00 (34.00, 177.00) 63.00 (36.00, 146.00) 0.548 0.584

Bilirubin (umol/L) 17.10 (10.26, 41.04) 15.39 (8.55, 41.04) 18.81 (10.26, 32.75) − 0.996 0.319

Anion gap (mmol/L) 16.45 ± 5.79 16.54 ± 5.85 16.16 ± 5.65 0.697 0.486

Bicarbonate (mmol/L) 21.55 ± 5.30 21.53 ± 5.56 21.61 ± 4.45 − 0.153 0.879

Glucose (mmol/L) 7.17(5.72, 9.83) 7.22 (5.72, 9.83) 7.03 (5.50, 9.89) 0.442 0.659

Creatinine (umol/L) 88.40 (61.88, 132.60) 88.40 (61.88, 132.60) 79.56 (61.88, 123.76) 1.287 0.198

BUN (mmol/L) 6.05 (3.92, 9.97) 6.05 (3.92, 10.32) 6.05 (3.56, 9.97) 0.655 0.513

Prothrombin time (s) 13.70 (12.50, 15.30) 13.80 (12.60, 15.40) 13.30 (12.30, 15.10) 1.596 0.111

Calcium (mmol/L) 1.99 ± 0.27 1.98 ± 0.29 2.02 ± 0.21 − 1.479 0.140

Sodium (mmol/L) 137.84 ± 5.34 137.92 ± 5.56 137.60 ± 4.64 0.633 0.527

Chlorine (mmol/L) 103.17 ± 7.18 103.16 ± 7.30 103.21 ± 6.84 − 0.084 0.933

Potassium (mmol/L) 4.20 ± 0.85 4.19 ± 0.84 4.26 ± 0.89 − 0.865 0.388

Magnesium (mmol/L) 0.76 ± 0.17 0.77 ± 0.17 0.76 ± 0.17 0.560 0.575

Phosphate (mmol/L) 1.05 ± 0.47 1.03 ± 0.45 1.10 ± 0.53 − 1.688 0.092

Comorbidities, n (%)

Obesity 171 (28.64) 125 (27.96) 46 (30.67) 0.401 0.526

Hypertension 294 (49.25) 220 (49.22) 74 (49.33) 0.001 0.980

Diabetes 173 (28.98) 125 (27.96) 48 (32.00) 0.889 0.346

Cerebral infarction 32 (5.36) 21 (4.70) 11 (7.33) 1.538 0.215

Cirrhosis 34 (5.70) 24 (5.37) 10 (6.67) 0.352 0.553

Atrial fibrillation 99 (16.58) 78 (17.45) 21 (14.00) 0.966 0.326

CHF 80 (13.40) 58 (12.98) 22 (14.67) 0.277 0.599

COPD 48 (8.04) 35 (7.83) 13 (8.67) 0.106 0.744

Malignant tumor 37 (6.20) 25 (5.59) 12 (8.00) 1.119 0.290

AKI 313 (52.43) 230 (51.45) 83 (55.33) 0.678 0.410

Septic shock 62 (10.39) 48 (10.74) 14 (9.33) 0.238 0.626

CKD 75 (12.56) 56 (12.53) 19 (12.67) 0.002 0.965

Depression 91 (15.24) 64 (14.32) 27 (18.00) 1.179 0.278

Delirium 60 (10.05) 37 (8.28) 23 (15.33) 6.185 0.013

Oliguria 54 (9.05) 40 (8.95) 14 (9.33) 0.020 0.887

Treatment, n (%)

Norepinephrine 94 (15.75) 77 (17.23) 17 (11.33) 2.940 0.086

Mechanical ventilation 242 (40.54) 188 (42.06) 54 (36.00) 1.710 0.191

RRT 54 (9.05) 40 (8.95) 14 (9.33) 0.020 0.887
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SOFA score, serum creatinine levels, administration of 
norepinephrine, and the presence of oliguria on the first 
day of admission are shown to be positively correlated 
with SHAP values, indicating that increases in these fac-
tors are associated with a higher risk of RRT in patients 
with AP.

Evaluation of the optimal model
By presenting complex logistic regression or Cox regres-
sion models through nomograms, their results are sim-
plified and visually displayed, thereby enhancing clinical 
utility. In this study, the Lasso-LR model was converted 
into an easily interpretable static nomogram using R lan-
guage, as depicted in Fig. 5. Its performance was subse-
quently evaluated.

The Lasso-LR model demonstrated a strong discrimina-
tive ability to predict the risk of RRT in patients with AP, 
achieving an AUROC of 0.955 (95% CI: 0.924–0.987) in 
the training set. In the validation set, the model sustained 
its efficient discriminative capability, with an AUROC of 
0.985 (95% CI: 0.970–1.000). For further details, please 
refer to Supplementary Fig.  3. The calibration curves 
for the Lasso-LR model revealed an excellent fit in both 
sets (Brier scores: 0.039 and 0.032, respectively), indi-
cating high consistency. Additional information can be 
found in Supplementary Fig.  4. DCA results revealed 
that the model performed well when the threshold prob-
ability ranged from 0 to 88% in the training cohort, while 
the threshold probability range for the validation cohort 
extended from 0 to 100%. Within this range, using the 
model to predict the risk of RRT provided greater net 
benefits compared to the "treat all" or "treat none" strate-
gies, suggesting significant clinical applicability. For more 
details, please refer to Supplementary Fig. 5.

Discussion
Renal Replacement Therapy (RRT) is pivotal in man-
aging acute pancreatitis (AP); however, its efficacy 
hinges on timely and accurate execution. The complex 
demands of RRT’s operation and management can lead 
not only to complications such as hemorrhage, throm-
bosis, and infections but also to treatment delays due 
to overly conservative approaches [11, 20]. Thus, the 

Fig. 2 Clinical features were selected based on LASSO regression 
with cross-validation. a Turing parameter (λ) selection in the LASSO 
model using tenfold cross-validation; b LASSO coefficient profiles 
of the 41 candidate variables. LASSO Least Absolute Shrinkage 
and Selection Operator, SOFA Sequential Organ Failure Assessment

Table 2 Performance comparison of four different algorithmic models in the training set and the validation set

AUROC Area Under the Receiver Operating Characteristic Curve, CI Confidence Interval, Lasso-LR Least Absolute Shrinkage and Selection Operator-Logistic Regression, 
XGBoost eXtreme Gradient Boosting

Models AUROC (95%CI) Sensitivity (%) Specificity (%) Accuracy Kappa

Training set

Lasso-LR 0.955 (0.924–0.987) 0.875 0.953 0.946 0.715

Support vector machines 0.955 (0.922–0.988) 0.875 0.948 0.942 0.698

Random forest 0.944 (0.901–0.987) 0.900 0.924 0.922 0.632

XGBoost 0.939 (0.896–0.981) 0.875 0.914 0.911 0.590

Validation set

Lasso-LR 0.985 (0.970–1.000) 0.857 0.956 0.947 0.721

Support vector machines 0.984 (0.967–1.000) 0.857 0.956 0.947 0.721

Random forest 0.977 (0.956–0.998) 1.000 0.934 0.940 0.725

XGBoost 0.964 (0.935–0.993) 0.857 0.956 0.947 0.721
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accurate determination of the optimal timing for ini-
tiating RRT is crucial, especially as decision-making 
in non-emergency situations becomes more complex 
[21]. The application of ML algorithms presents a novel 
approach to enhancing medical decision-making by 
identifying key indicators and developing precise risk 
prediction models. This study utilized the MIMIC-IV 
database to develop several ML-based models for eval-
uating the RRT risk in patients with AP, incorporating 
critical parameters like the SOFA score, creatinine lev-
els, urine output, and norepinephrine administration. 
The Lasso-LR model achieved the highest AUROC in 
both the training and validation cohorts, demonstrat-
ing an excellent balance between sensitivity and speci-
ficity. The sensitivity reached 85.7%, indicating that the 
model effectively identifies the majority of patients who 
genuinely require RRT, thus providing a basis for timely 
intervention. The specificity reached 95.6%, indicating 
that the model excels in excluding patients who do not 
require RRT, thereby reducing the likelihood of mis-
diagnosis and unnecessary medical interventions. The 
accuracy was 94.7%, further confirming the reliability 
of the Lasso-LR model in classifying AP patients as 
needing or not needing RRT. Additionally, the Lasso-
LR model exhibits strong calibration and clinical rel-
evance. Consequently, the Lasso-LR model has proven 
to be a reliable tool for identifying AP patients who may 
require RRT, thus providing invaluable assistance in 
clinical decision-making and significantly impacting the 
treatment and management of this patient population.

In our study, through the constructed nomogram mod-
els, it was found that patients with AP are more likely to 
require RRT when presenting with specific character-
istics: high SOFA scores and creatinine levels, oliguria 
upon first-day admission, and norepinephrine need dur-
ing hospitalization. The SOFA score, indicative of organ 
dysfunction severity, markedly heightens RRT necessity. 
Recent studies have shown that the SOFA score outper-
formed other indices like APACHE II, BISAP, and Ran-
son in predicting AP severity, ICU admission rates, and 
mortality, with higher statistical significance [22]. Addi-
tionally, studies have indicated that an increase in the 
SOFA score is independently associated with a surge in 
adverse outcomes [23], and serves as a crucial predictor 
for intra-abdominal hypertension (IAH) in AP cases [24]. 
IAH may aggravate AP-induced AKI by various mecha-
nisms: it compromises renal blood flow, escalates inflam-
matory responses, and increases cytotoxic effects, thus 
raising the risk of RRT [25]. In our predictive model, the 
SOFA score was incorporated as a significant independ-
ent variable.

Our predictive model incorporates high creatinine lev-
els and oliguria on the first day of admission, recognized 
indicators of AKI. Research has indicated that substantial 
changes in renal function occur early in AP, particularly 
in SAP [26]. Elevated serum creatinine levels often point 
to renal dysfunction, a result of inflammation, endotox-
emia, and hemodynamic instability. In the ML-based 
predictive model for AP patients with AKI, the role of 
serum creatinine is especially critical [27, 28]. Moreover, 
creatinine levels at admission are not only independent 
predictors of poor outcomes in AP patients [29] but also 
correlate with an increased risk of surgical complications 
[30]. In our nomogram, oliguria, defined as a daily urine 
output of less than 400 mL, serves as a warning sign for 
initiating RRT, reflecting early damage to renal concen-
trating function [31]. Despite some limitations of the 
Kidney Disease Improving Global Outcomes (KDIGO) 
criteria based on serum creatinine and urine output 
[32], it remains irreplaceable in the clinical treatment 
and research of AKI until new guidelines are introduced. 
The significance of these parameters in predicting AKI 
is well-recognized in the field of ML. As demonstrated 
by Shao et  al. [33], incorporating such parameters into 
ML models can markedly enhance predictive accuracy 
and clinical applicability. Elevated creatinine and oligu-
ria necessitate a proactive approach to identify causes, 
investigate reversible factors, and implement targeted 
interventions, including infection control, hemodynamic 
stabilization, and fluid resuscitation.

Norepinephrine, a potent vasopressor widely utilized 
in managing shock, particularly in severe septic shock 
stemming from AP, reflects the severity of the patient’s 

Fig. 3 ROC curves and AUROCs of four machine learning models 
in the validation set. ROC Receiver Operating Characteristic, AUROC 
Area Under the Receiver Operating Characteristic Curve, Lasso-LR 
Lasso-Logistic Regression, SVM Support Vector Machine, RF Random 
Forest, XGBoost eXtreme Gradient Boosting



Page 8 of 11Zuo et al. European Journal of Medical Research           (2025) 30:70 

condition and shock status through its required dosage 
and intensity [34, 35]. Some perspectives argue that vaso-
pressors can mitigate the risk of AKI by enhancing glo-
merular perfusion pressure, which may also reduce the 
need for RRT [36]. Conversely, more research suggests 

that norepinephrine use is a predictive indicator for 
AKI development in patients with AP [37] and is corre-
lated with increased mortality rates [38]. This contradic-
tion may stem from the fact that norepinephrine usage 
signifies severe circulatory failure in patients, a stage 

Fig. 4 The influence of four distinct features on the predicted outcomes. The horizontal axis displays the values of continuous variables 
or the presence/absence of categorical variables, whereas the vertical axis denotes the SHAP values. Patient attributions to outcomes are visually 
depicted through colored dots: yellow dots suggest a requirement for RRT, while black dots signify no such need. SOFA Sequential Organ Failure 
Assessment, SHAP SHapley Additive exPlanations, RRT  Renal Replacement Treatment
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where renal function is already significantly impaired, 
which demands early and aggressive supportive care. In 
our study, the use of norepinephrine during hospitaliza-
tion was incorporated into the model as an independent 
predictor. This highlights the severity of the condition 
in patients receiving such treatment and the challenges 
associated with renal recovery, thereby indicating an 
increased need for RRT. These findings further confirm 
that assessing the necessity and intensity of vasopressor 
use is crucial for predicting renal recovery and determin-
ing the need for RRT in managing patients with AP.

This study indeed presents several significant advan-
tages. Firstly, a large public healthcare database is utilized 
for the first time to develop a predictive model for RRT 
in patients with AP. This approach allows the study to 
be based on an extensive clinical dataset, enhancing the 
model’s generalizability and reliability. Secondly, multi-
ple ML algorithms are employed, and cross-validation is 
used for model evaluation and optimization, ensuring the 
model’s robustness and accuracy. The use of SHAP values 
and nomogram increases the model’s transparency and 
interpretability. Lastly, the metrics adopted by the model 
are primarily based on data within the first 24  h after 
patient admission, highlighting the model’s early predic-
tion capability. Early identification of high-risk patients 
with AP and providing them with timely intervention and 
management are crucial for improving outcomes.

This study has certain limitations. Firstly, as a single-
center retrospective study limited by geographic and 
demographic factors, its generalizability across diverse 
populations may be compromised. Secondly, the reli-
ance on the MIMIC-IV database constrains the scope of 
accessible and analyzable features. Although 41 features 
were considered, the complex and variable etiology of 

AP suggests the existence of significant predictors not 
included in this study. Finally, while internal validation 
of the model has been conducted, the absence of external 
validation could hinder its practical application in clini-
cal settings. Future research, by conducting large-sample 
prospective studies on datasets from different regions 
and populations, could enhance the generalizability and 
clinical utility of the model.

Conclusions
The Lasso-LR model, developed through the LASSO 
regression cross-validation method, demonstrates a sig-
nificant advantage in predicting the necessity of RRT for 
patients with AP. This model demonstrates potential clin-
ical application, offering crucial decision support to phy-
sicians. To further confirm the broad applicability and 
accuracy of the study results, future research needs to be 
validated on a wider range of multi-center cohorts.
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