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Abstract 

Background The mechanism of palmitoylation in the pathogenesis of Alzheimer’s disease (AD) remains unclear.

Methods This study retrieved AD data sets from the GEO database to identify palmitoylation-associated genes 
(PRGs). This study applied WGCNA along with three machine learning algorithms—random forest, LASSO regres-
sion, and SVM–RFE—to further select key PRGs (KPRGs). The diagnostic performance of KPRGs was evaluated using 
Receiver Operating Characteristic (ROC) curve analysis. Immune cell infiltration analysis was conducted to assess 
correlations between KPRGs and immune cell types, and a competing endogenous RNA (ceRNA) regulatory network 
was constructed to explore their potential regulatory mechanisms.

Results 17 PRGs were identified from the AD data sets, with 7 genes showing increased expression and 10 show-
ing decreased expression. Through WGCNA and machine learning analyses, ZDHHC22 was selected as a KPRG. The 
ROC curve analysis demonstrated that ZDHHC22 had an area under the curve value of 0.659, indicating moderate 
diagnostic potential. Immune cell infiltration analysis revealed significant associations between ZDHHC22 expres-
sion and the infiltration of several immune cell types, including naïve B cells, CD8 + T cells, and M1 macrophages. In 
addition, 25 miRNAs and 55 lncRNAs were predicted to potentially target ZDHHC22, forming the basis for a lncRNA–
miRNA–mRNA ceRNA network.

Conclusions This study is the first to use bioinformatics methods to identify ZDHHC22 as a key KPRG in AD, high-
lighting its potential role in disease diagnosis and immune regulation. The regulatory network of ZDHHC22 provides 
new insights into the molecular mechanisms of AD and lays the foundation for future targeted therapeutic strategies.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative dis-
order and the most prevalent form of dementia among 
older adults, accounting for approximately 60% to 70% of 
all dementia cases [1, 2]. As global aging accelerates, the 
prevalence of AD continues to rise, with projections esti-
mating that the global AD population will exceed 150 mil-
lion by 2050 [3, 4]. Currently, the etiology of AD remains 
incompletely understood, and effective treatment options 
are limited. Existing medications only alleviate symptoms 
but fail to halt or slow disease progression [5]. There-
fore, investigating the pathogenesis of AD and identify-
ing novel therapeutic targets have become focal points in 
neuroscience and biomedical research.

Palmitoylation is a post-translational modification in 
which a saturated fatty acid, palmitic acid, covalently 
attaches to cysteine residues of target proteins [6]. This 
modification plays a crucial role in regulating protein 
stability, localization, and interactions. Beyond influenc-
ing protein positioning within the cell membrane, palmi-
toylation is involved in various physiological processes, 
including signal transduction, neurotransmission, and 
immune response [7, 8]. Recently, there has been growing 
interest in the role of palmitoylation in neurodegenera-
tive diseases, particularly in the pathogenesis of AD [9, 
10].

Although the precise mechanisms underlying AD 
are still being unraveled, substantial evidence suggests 
that its pathological processes are closely linked to pro-
tein aggregation, such as the abnormal accumulation of 
β-amyloid and tau proteins [11, 12]. Palmitoylation may 

influence AD pathogenesis by modulating the stabil-
ity and function of these key proteins [13]. For example, 
studies have shown that palmitoylation modifications 
can regulate the extracellular accumulation of β-amyloid, 
potentially affecting the progression of neurodegenera-
tive lesions by altering its interactions with other cellular 
factors [14]. Thus, understanding the interplay between 
palmitoylation and AD mechanisms may not only shed 
light on AD pathogenesis but also provide potential tar-
gets for new diagnostic and therapeutic strategies.

To explore the potential role of palmitoylation in 
AD, this study employs multiple bioinformatic analysis 
methods, including LASSO regression, random forest, 
Support Vector Machine (SVM), and Weighted Gene Co-
Expression Network Analysis (WGCNA). Using these 
approaches, we identified differentially expressed pal-
mitoylation-related key enzymes from AD-related gene 
expression data sets. Further analysis of the roles of these 
key enzymes in AD pathogenesis offers a new perspective 
on the function of palmitoylation in AD and may inform 
future therapeutic targeting strategies (Fig. 1).

Materials and methods
Identification of palmitoylation‑related genes (PRGs)
Gene expression data sets related to "Alzheimer’s Dis-
ease" were retrieved from the GEO database to identify 
key genes. The data sets included in our analysis met 
the following criteria: (i) inclusion of whole-genome 
mRNA microarray data; (ii) samples collected from 
AD; (iii) data from human subjects only; and (iv) suf-
ficient sample size to support statistical analysis. The 

Fig. 1 Flow chart of the study
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GSE5281 and GSE29378 data sets were selected for sub-
sequent analysis. Using R software (version 4.2.1) and the 
“limma” package, differentially expressed genes (DEGs) 
were defined as those with a p < 0.05 and |log2FC|> 0.5. 
Since the GEO database is a public resource, this study 
required no ethical approval. Based on published litera-
ture, 30 palmitoylation-related key enzymes (Supplemen-
tary Table 1) were selected for investigation [15, 16].

Construction of the WGCNA network
This study used the R package “WGCNA” to perform 
WGCNA, aiming to identify gene modules associated 
with AD and explore potential candidate biomarkers or 
therapeutic targets. First, the sample data were preproc-
essed, including the removal of outliers. Next, a cor-
relation matrix was constructed using the “WGCNA” 
package, and the optimal soft-thresholding power (b) was 
selected to convert the correlation matrix into an adja-
cency matrix, ensuring a scale-free topology for the net-
work. The Topological Overlap Matrix (TOM) was then 
computed, and genes with similar expression patterns 
were clustered into distinct modules using hierarchical 
clustering based on the TOM-based dissimilarity metric. 
Modules with an absolute correlation coefficient greater 
than 0.3 and statistical significance were prioritized for 
further analysis [17]. The relationship between module 
membership and gene importance was further explored 
to identify potential hub genes.

Screening of key genes using three machine learning 
algorithms
The Random Forest algorithm was implemented using 
the "Random Forest" package in R to rank genes by 
importance and construct a classifier. This method was 
chosen for its robustness in handling high-dimensional 
data and its ability to prevent overfitting while providing 
feature importance rankings. SVM–RFE, applied via the 
"e1071" package, uses support vector machine weights 
to rank genes by importance. This method was selected 
for its ability to capture non-linear relationships and its 
effectiveness in recursive feature elimination with tenfold 
cross-validation to ensure model stability. LASSO regres-
sion was conducted using the "glmnet" package to iden-
tify significant genes through L1 regularization [18, 19]. 
This method was chosen to reduce collinearity and over-
fitting while selecting the most relevant features in high-
dimensional gene expression data.

Receiver operating characteristic (ROC) analysis
Genes identified by the three machine learning algo-
rithms were intersected with those from the WGCNA 
analysis to define key palmitoylation-related genes 
(KPRGs). ROC curve analysis was then performed using 

the “ROCR” package in R to evaluate the sensitivity and 
specificity of KPRGs in the AD diagnostic model.

Gene set enrichment analysis (GSEA) and gene set 
variation analysis (GSVA)
GSEA was conducted using the “clusterProfiler” pack-
age in R to calculate the Normalized Enrichment Score 
(NES), assessing KPRG correlations with specific path-
ways (NES > 0 indicating a positive correlation). GSVA 
was also used to evaluate pathway enrichment levels of 
KPRGs across different AD samples, with significance 
determined by a False Discovery Rate (FDR) threshold 
of < 0.05.

Correlation between key genes and infiltrating immune 
cells
The CIBERSORT algorithm was applied to analyze the 
proportions of 22 types of infiltrating immune cells in AD 
patient tissues, with p < 0.05 considered significant. Pear-
son correlation analysis was conducted to assess the rela-
tionship between key genes and immune cell infiltration. 
The final results were visualized using the “reshape2” and 
“tidyverse” packages in R.

Construction of a ceRNA network for KPRGs
To investigate the regulatory mechanisms of KPRGs in 
AD, potential miRNAs and lncRNAs targeting KPRGs 
were predicted using TargetScan (http:// www. targe tscan. 
org/), miRDB (http:// mirdb. org/), and miRanda (http:// 
www. micro rna. org/). The lncRNA–miRNA–mRNA 
competing endogenous RNA (ceRNA) network was con-
structed based on these predictions.

Results
Initial identification of 17 PRGs
A total of 732 differentially expressed genes (DEGs) were 
identified from the GSE5281 data set and 65 DEGs from 
the GSE29378 data set (Fig. 2A). The two data sets were 
subsequently integrated and normalized (Fig.  2B, C). 
From an initial list of 30 PRGs, 17 differentially expressed 
palmitoylation-related genes (DPRGs) were identified 
(Fig. 2D), among which 7 genes, including LYPLA1, were 
upregulated, and 10 genes, including ZDHHC3, were 
downregulated (Supplementary Table 2).

Identification of ZDHHC22 as the KPRG
WGCNA grouped the genes into 12 modules, with 
the red module showing the most significant correla-
tion with the AD phenotype (Fig.  3A), comprising 574 
genes. LASSO regression analysis identified 13 genes: 
ZDHHC2, ZDHHC4, ZDHHC5, ZDHHC12, ZDHHC14, 
ZDHHC18, ZDHHC20, ZDHHC22, ZDHHC23, 
ZDHHC24, PPT1, LYPLA1, and LYPLA2 (Fig.  3B). 

http://www.targetscan.org/
http://www.targetscan.org/
http://mirdb.org/
http://www.microrna.org/
http://www.microrna.org/
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SVM–RFE analysis further screened 9 genes: ZDHHC2, 
ZDHHC14, ZDHHC23, PPT1, ZDHHC12, ZDHHC20, 
ZDHHC22, ZDHHC18, and ZDHHC3 (Fig.  3C). The 
random forest algorithm identified 17 genes (Fig.  3D). 
The intersection of genes identified by all three machine 
learning algorithms yielded 8 DPRGs: ZDHHC2, 
ZDHHC14, ZDHHC23, PPT1, ZDHHC12, ZDHHC20, 
ZDHHC22, and ZDHHC18. Ultimately, ZDHHC22 was 
identified as the key PRG (KPRG) from the intersection 
of WGCNA and machine learning results (Fig. 3E).

Diagnostic performance of ZDHHC22
ROC curve analysis indicated that ZDHHC22 has an 
area under the curve value of 0.659, suggesting moderate 
diagnostic potential (Fig. 3F).

Enrichment pathway analysis of ZDHHC22
GSEA revealed that ZDHHC22 is closely associated with 
pathways involving the spliceosome, ribosome, and fatty 

acid metabolism (Fig.  4A). GSVA further demonstrated 
that ZDHHC22 is significantly associated with path-
ways, such as ganglioside biosynthesis, mismatch repair, 
and propanoate metabolism (Fig.  4B) (Supplementary 
Table 3).

Correlation of ZDHHC22 with various immune cells
Immune cell infiltration analysis indicated that 
ZDHHC22 expression in AD tissues is significantly 
correlated with several immune cell types, including 
naïve B cells, memory B cells, resting CD4 + T cells, 
M1 macrophages, and resting mast cells (Fig.  4C). Spe-
cifically, high ZDHHC22 expression was associated with 
increased infiltration of naïve B cells, CD8 + T cells, and 
M1 macrophages, while the infiltration of resting den-
dritic cells and resting memory CD4 + T cells decreased, 
suggesting a critical role of ZDHHC22 in immune regula-
tion (Fig. 4D, E).

Fig. 2 Palmitoylation-related genes screened from the AD data set. A GSE5281 and GSE29378 were differentially expressed genes in two AD data 
sets. B Collate and merge the two databases. C Differentially expressed genes after merging two data sets. D 17 palmitoylation-related genes 
with different expression were initially screened
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Fig. 3 ZDHHC22 was identified as a key palmitoylation genes (KPRGs). A Screening of 574 genes strongly associated with AD using WGCNA. B 
13 genes associated with AD were screened using Lasso regression. C Nine genes associated with AD were screened using SVM–RFE analysis. D 
17 genes associated with AD were screened using random forest. E ZDHHC22 was obtained by taking the intersection of WGCNA with the genes 
obtained from the three machine learning analyses. F ROC curve analysis indicated that ZDHHC22 has an area under the curve value of 0.659
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Fig. 4 Pathway enrichment analysis and immune cell infiltration analysis of ZDHHC22. A, B GSEA and GSVA analysis of ZDHHC22. C Differences 
in the infiltration of 22 types of immune cells in AD. D, E Analysis of ZDHHC22-associated immune cell infiltration
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Construction of the ceRNA network for ZDHHC22
Using three miRNA-target prediction tools, 25 miR-
NAs, including miR-149-3p and miR-22-5p, were pre-
dicted to regulate ZDHHC22. In addition, 55 lncRNAs, 
including C10orf91 and LINC01002, were identified 
as potential targets of these 25 miRNAs. The lncRNA–
miRNA–ZDHHC22 ceRNA network was constructed 
based on these predictions (Fig. 5).

Discussion
In this study, 17 PRGs were identified, with 7 showing 
increased expression and 10 showing decreased expres-
sion, suggesting that palmitoylation-related genes may 
have bidirectional regulatory roles in AD. Palmitoyla-
tion is an essential modification in the nervous system, 
impacting protein localization, stability, and function, 
and it plays a critical role in synaptic plasticity and signal 
transduction. Previous studies have associated abnormal 
palmitoylation with neurodegenerative diseases [20, 21]. 
Specifically, in AD, aberrant palmitoylation may lead to 
abnormal processing of amyloid precursor protein, exac-
erbating Aβ aggregation [14, 22]. Therefore, these 17 

PRGs may participate in AD pathogenesis by modulating 
protein palmitoylation.

Among the PRGs, ZDHHC22 was identified as a key 
gene through WGCNA and multiple machine learning 
algorithms. ROC curve analysis of ZDHHC22 demon-
strated an AUC value of 0.659, indicating modest diag-
nostic potential in AD. However, since the AUC did not 
reach 0.7, the sensitivity and specificity of ZDHHC22 
alone as a diagnostic biomarker are limited. Combin-
ing ZDHHC22 with other PRGs or traditional biomark-
ers may enhance diagnostic efficiency. A multi-marker 
approach combining β-amyloid and tau proteins has been 
shown to significantly improve the early diagnosis of AD 
[23, 24]. We speculate that combining tau protein or neu-
roinflammation-related markers with ZDHHC22 in the 
future may improve the diagnostic accuracy of AD, and 
also allow further exploration of the therapeutic potential 
of palmitoylation in clinical practice.

ZDHHC22 is a significant palmitoyl transferase 
involved in the palmitoylation of various neuronal pro-
teins, thereby contributing to synaptic transmission 
and the construction of neuronal signaling networks 

Fig. 5 ceRNA network of miRNAs and LncRNAs was established based on ZDHHC22
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[25]. Palmitoylation modification is considered to be 
an important mechanism for regulating cellular func-
tions, especially in neurons and immune cells, where 
palmitoylation influences many key processes, such as 
cell signaling, synaptic plasticity, cell membrane stabil-
ity and immune responses [26]. Studies have shown that 
ZDHHC22 plays a vital role in synaptic plasticity and 
neuronal survival and may be involved in cognitive dys-
function in the brain [27]. In the context of AD, palmi-
toylation may influence neuroinflammation, synaptic 
function, and neurodegeneration by modulating neuronal 
membrane proteins, receptors, and signaling pathways 
[28]. Based on the above, we speculate that ZDHHC22 
may further influence AD by affecting neuroinflamma-
tory responses and immune cell functions. This could 
involve regulating the activity of immune cells, such as 
microglia and T cells, thereby driving the progression of 
AD, although this remains unverified at present [29]. In 
addition, ZDHHC22 may impact synaptic dysfunction 
in AD by regulating the palmitoylation of several neuro-
transmitter receptors, with palmitoylation being a poten-
tial mechanism underlying synaptic dysfunction in AD 
[30, 31].

Immune cell infiltration analysis showed that 
ZDHHC22 expression correlates significantly with 
immune cells, such as naïve B cells, CD8 + T cells, and 
M1 macrophages. The immune system plays a crucial 
role in AD pathogenesis, with the activation of micro-
glia and macrophages being widely studied. ZDHHC22 
expression may modulate the activation and infiltra-
tion of these immune cells, influencing AD progression 
through changes in the inflammatory microenvironment 
[32]. In particular, the elevated expression of M1 mac-
rophages is closely associated with neuroinflammation, 
while the infiltration of B and T cells reflects systemic 
immune dysregulation, further supporting the potential 
role of ZDHHC22 in immune cells [33].

Through the prediction of miRNA and lncRNA inter-
actions, a ceRNA network centered on ZDHHC22 was 
constructed. The ceRNA network may play a crucial role 
in multilayer gene regulation and is significant in the 
molecular regulatory mechanisms of AD. Recent studies 
indicate that miRNAs, such as miR-22, are involved in 
AD pathology and exert protective effects by interfering 
with inflammatory pathways and amyloid deposition [34, 
35]. The ceRNA network of ZDHHC22 reveals poten-
tial interactions with miRNAs and lncRNAs, suggesting 
that ZDHHC22 may regulate AD-related gene expression 
through ceRNA mechanisms, thereby influencing disease 
progression.

This study has several limitations. Although ZDHHC22 
shows certain diagnostic potential, its relatively low AUC 
value limits its effectiveness as an independent diagnostic 

biomarker. The moderate diagnostic accuracy suggests 
that ZDHHC22 may be more useful in combination with 
other biomarkers, rather than as a standalone indicator. 
In addition, this study relies solely on publicly available 
data sets, which, while valuable, can introduce biases 
depending on the data quality and the heterogeneity of 
the sample populations. More importantly, this study 
lacks experimental validation of the bioinformatics find-
ings, which is a crucial step for confirming the biological 
relevance of ZDHHC22 in AD. Therefore, future studies 
should include functional validation, such as knockdown 
or overexpression studies of ZDHHC22 in neuronal 
models, to better understand its role and confirm its 
potential as a therapeutic target or diagnostic biomarker. 
Only through experimental confirmation can the findings 
be considered for practical clinical application.

Conclusion
This study employed WGCNA and multiple machine 
learning algorithms to identify key palmitoylation-related 
genes associated with AD, enhancing the accuracy and 
reliability of the results. Immune cell infiltration analysis 
and ceRNA network construction further revealed the 
potential roles of ZDHHC22 in immune regulation and 
gene regulatory networks, providing new insights into 
AD mechanisms.
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