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Abstract 

Sepsis is one of the leading causes of death among seriously ill patients worldwide, affecting more than 30 million 
people annually and accounting for 1–2% of hospitalizations. By analyzing gene expression omnibus (GEO) data 
set, our team explored the relationship between m6A methylation gene and poor prognosis of sepsis. The purpose 
of this present study is to examine new detection markers for patients with poor prognosis, provide theoretical basis 
for timely intervention and improve the survival rate of patients. First, GSE54514 transcriptome data were extracted 
from the GEO database 31 patients with sepsis related death and 72 sepsis survivors. Key genes were screened 
from differentially expressed genes (DEGs), least absolute shrinkage and selection operator (LSAAO) and random 
forest (RF). And then, METTL3, WTAP and RBM15 were further verified by quantitative reverse transcription PCR (qRT-
PCR). The constructed nomogram model showed high accuracy in predicting death. These three genes are mainly 
involved in chemokine signaling pathway, differentiation of monocytes and T cells, and phagocytosis of immune 
cells. The analysis showed that a high m6A score subtype is linked to lower immunosuppression and higher survival 
rates in clinical samples, suggesting better immune responses and outcomes for these patients. Finally, the protective 
effect of METTL3 in sepsis was demonstrated in mouse sepsis model applied with METTL3 inhibitor, by conducting 
cell flow cytometry analysis, enzyme-linked immunosorbent assay (ELISA) and hematoxylin–eosin (HE) staining. In 
conclusion, these findings provide potential biomarkers and targets for early precision diagnosis and treatment.
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Introduction
Sepsis is an infection-triggered, critical immune system 
disease usually accompanied with life-threatening organ 
impairment [1, 2]. Despite the rapid advances in medical 
procedures, sepsis remains a major clinical challenge in 
the field of acute and critical care medicine [3]. A meta-
analysis involving 51 studies showed that there were 189 
cases of sepsis per 100,000 person-years, with a mortal-
ity rate of 26.7%. In the ICU setting, the incidence rate 
was 58 per 100,000 person-years, with a higher mortal-
ity rate of 41.9% [4]. The annual medical expenses caused 
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by sepsis amount to billions of dollars each year, impos-
ing a heavy economic burden on families and society. In 
addition, the high morbidity and mortality rates of sepsis 
increases the pressure on medical resources, especially in 
developing countries where inadequate medical facilities 
and a shortage of medical staff pose greater challenges to 
the treatment and management of patients with sepsis 
[5]. Early recognition and appropriate treatment can sig-
nificantly improve outcome of sepsis patients. With the 
in-depth understanding of the pathogenesis of sepsis and 
the advancement of diagnostic technology, individual or 
group physiological parameters have been used to pre-
dict severe complications. Therefore, screening survival 
genes associated with sepsis, studying different subtypes 
of sepsis, and clarifying its causes are all effective means 
to reduce the risk of death in patients with sepsis and 
may provide new directions for clinical treatment.

In recent years, epigenetic modification mechanisms 
have gradually shown a central role in controlling dis-
ease progression. Methylation modification of N6-meth-
yladenosine (m6A) is a common means of biofunctional 
modification in organisms, and several studies have 
revealed key mechanisms related to the occurrence and 
development of sepsis [6]. This means of biomodifica-
tion of m6A is associated with several biological pro-
cesses such as RNA shearing, translocation, translation, 
and degradation [7]. Furthermore, m6A modification is 
reversible and consists of methylase (writer), demethy-
lase (eraser), and methyl-recognition proteins (reader), 
and is dynamically tuned by the interaction between 
these functions [8]. Recent researches indicated that m6A 
methylation plays a crucial role in the occurrence and 
development of various diseases [6]. It was reported that 
METTL3-mediated m6A modification could promote 
the stabilization of PD-L1 mRNA in an IGF2BP3-associ-
ated manner in breast cancer cells and maybe positively 
correlated with tumor immunotherapy [9]. Besides, in 
neurodegenerative diseases such as Alzheimer’s and Par-
kinson’s, m6A modification was also indicated to play an 
important role in maintaining the survival and function 
of neurons [10]. Furthermore, in autoimmune diseases 
like rheumatoid arthritis (RA), m6A methylation regu-
lators could be used to predict RA diagnosis and might 
additionally regulate the inflammatory activity [11]. In 
summary, m6A methylation is closely associated with cell 
survival and inflammatory process.

Given its significance in cancer, neurological diseases, 
and immune diseases, the potential character of m6A 
methylation and modulators in the diagnosis, thera-
peutics, and prognosis of sepsis attracts more attention. 
Studies have shown that m6A modification plays a key 
pathophysiological role in sepsis-induced organ dysfunc-
tion, such as heart failure, acute lung injury (ALI), and 

acute kidney injury (AKI), and is sometimes even used 
as a therapeutic target [12]. By using a CLP-induced sep-
sis-associated ALI mouse model, Zhang et  al. reported 
a critical role of METTL3 in sepsis-induced ALI patho-
genesis through Neutrophil extracellular traps-mediated 
m6A modification of alveolar epithelial cells [13]. In 
another sepsis induced cardiomyopathy in CLP mouse 
model, researchers found that M6A modification plays an 
indispensable regulatory role in cardiomyocyte apoptosis 
and inflammatory activity [14]. The studies on the m6A 
regulators in sepsis remains limited and the underlying 
mechanisms are still unrevealed.

Public databases provide us with rich transcriptomic 
data related to sepsis, which helps us to better under-
stand the potential impact of sepsis-associated m6A 
RNA methylation molecules on sepsis. In this study, 
we applied a bioinformatics approach to investigate the 
role of sepsis survival genes in the survival status and 
classification of sepsis patients. First, we identified the 
relevant data in the data set of GSE54514 and screened 
four genes that are closely associated with sepsis survival 
using support vector machine–recursive feature elimina-
tion (SVM–RFE), most LASSO, and RF algorithms. The 
three key genes were further screened by qRT-PCR. We 
then constructed a nomogram model for the three genes 
involved with sepsis survival for prediction of morbidity 
and further classified the expression profiles into three3 
different categories, and also investigated the intercon-
nections of these key genes with immune cells. Finally, we 
used a CLP-induced mouse sepsis model to investigate 
the regulatory role of METTL3‐mediated m6A modifica-
tion in different severity of sepsis.

 Methods
Experimental design and process
The flow chart of this study is shown in Fig. 1.

Data collection and preprocessing
Microarray data sets were downloaded from the GEO 
database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), using 
“sepsis,” “whole blood,” and “Homo sapiens” as core key-
words. GSE54514 was downloaded from the GEO data-
base on the GPL570 platform, covering 30 sepsis patients 
and 97 fatal sepsis patients [15].

Data preprocessing
All data sets were downloaded in txt. file format, and the 
data from mRNA arrays were used for positive exponen-
tial background correction, followed by quantile normali-
zation across arrays using the limma R package. Finally, 
we excluded healthy patients from the data set, retaining 
only the survival and death gene expression matrices of 
sepsis patients.

https://www.ncbi.nlm.nih.gov/geo/
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Identification of hub genes in sepsis
We standardized the GSE54514 cohort using the “limma” 
package in R. Based on prior literature, we identified 
26 m6A regulatory factors [16], but only 24 were pre-
sent in the data set after intersection with GSE54514. 
We visualized differential expression using “pheatmap” 
and “ggpubr” to generate heatmaps and box plots. Three 
feature selection algorithms—SVM–RFE [17], LASSO 
logistic regression [18], and RF algorithm [19]—were 
used to screen sepsis survival-related biomarkers. The 
RF algorithm was analyzed with “randomForest” [20], 
and LASSO logistic regression with “glmnet” [21]. Genes 
from these algorithms were considered as sepsis charac-
teristic genes for further analysis.

 Validation and screening by qRT‑PCR

1.	 Study subjects: Blood samples collected on the first 
day of diagnosis from sepsis patients admitted to the 
Second Affiliated Hospital of Anhui Medical Uni-
versity between October 1, 2023, and December 31, 
2023, who met the diagnostic criteria of the “2021 
International Guidelines for Management of Sepsis 
and Septic Shock” record whether the patient sur-
vived.

2.	 Study methods: 1. Sample processing: Total RNA was 
extracted from previously stored blood samples using 
the Trizol reagent kit. 2. qRT-PCR validation: The 
expression levels of METTL3, METTL14, WTAP, 
and RBM15 were detected using specific primers and 
probes with the qRT-PCR technique. GAPDH was 
used as the internal reference gene.

 Establishment of prognostic model
We used the “rms” package in R to create a nomogram 
model [22]. The predictive accuracy and maximum 
benefit level of the model were assessed using calibra-
tion curves, clinical decision curves (DCA), and clinical 
impact curves (CIC) [23]. The accuracy and generalizabil-
ity of the model were validated in an independent cohort 
by calculating its AUC value.

 m6A subtyping and evaluation of sepsis
Consensus clustering algorithms identify and classify 
each member in a data set [24]. To determine the optimal 
number of clusters, we used the CDF curve of consensus 
scores, clear distinctions in consensus matrix heatmaps, 
characteristics of the consensus cumulative distribu-
tion function plots, and ensured sufficient matching 

Fig. 1  Overall design flow chart of the bioinformatic analysis and validation
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consistency among cluster members [25]. We employed 
PCA to calculate sepsis sample scores.

 Immune cell infiltration
Single sample gene set enrichment analysis (ssGSEA) 
was conducted using the R packages “limma,” “GSVA,” 
and “GSEABase” to determine the relative abundance 
of immune cells in sepsis with different outcomes [26]. 
The gene sets marking each type of immune cell were 
obtained from the study by Charoentong [27].

 Animal experiments
Experimental grouping: We selected METTL3, which 
showed the largest differential expression among 
immune cells across different subtypes of the three regu-
latory factors, for validation. Fifteen mice were divided 
into three groups: normal control group (normal), sep-
sis model group (CLP), and intraperitoneal injection 
of STM2457 + sepsis model group (CLP + STM2457). 
Flow cytometry, enzyme-linked immunosorbent assay 
(ELISA), and HE staining were used to evaluate pro-
inflammatory cytokines in mouse lung tissue.

Treatment of groups: The CLP + STM2457 group 
received daily intraperitoneal injections of STM2457 
(50 mg/kg) for 3 days, while the other two groups were 
injected with an equal volume of saline. After 3 days of 
injections, mice requiring sepsis modeling underwent 
cecal ligation and puncture (CLP), while the control 
group had a laparotomy without further intervention. 
24  h after model establishment, tissue samples were 
collected.

Flow cytometry: Cells were isolated from spleen tissue 
by grinding and filtering, followed by red blood cell lysis. 
After diluting to a concentration of 1 × 10^6 cells/100 
µL, they were incubated with anti-CD16/CD32 antibody 
at 4  °C for 15 min to block Fc receptors. The cells were 
then washed twice with ice-cold PBS (pH 7.2) containing 
0.1% NaN3 and 0.5% BSA. Subsequently, the cells were 
incubated with fluorescent antibodies at 4 °C for 30 min, 
washed twice, and resuspended in 300 µL of PBS. The 
fluorescent antibodies used included: PE-conjugated 
anti-mouse IL-17A, BV421-conjugated anti-mouse 
CD4, PerCP-Cy™5.5-conjugated anti-mouse CD45, and 
APC-conjugated anti-mouse IFN-γ. The stained cells 
were analyzed using a Beckman CytoFLEX flow cytom-
eter. White blood cell populations were identified using 
CD45 labeling (CD45 +). CD4 + T cells (CD45 + CD4 +) 
were selected based on CD4 expression. Th1 and Th17 
subsets were distinguished by staining for IFN-γ and 
IL-17A, identifying Th1 cells (CD45 + CD4 + IFN-γ +) 
and Th17 cells (CD45 + CD4 + IL-17A +). Data acquisi-
tion was performed using CytExpert software (Beckman 

Coulter, version 2.4), followed by analysis to assess spe-
cific immune cell infiltration.

ELISA: Blood was collected from the orbital area and 
then centrifuged to obtain serum. The levels of IL-6 (ELK 
Biotechnology #ELK1157), IL-1β (ELK Biotechnology 
#ELK1271), TNF-α (ELK Biotechnology #ELK1387) were 
determined according to the ELISA kit instructions.

HE staining: In brief, these tissues of lungs, liver, kid-
neys, and small intestine were fixed with formalin, 
embedded in paraffin, sectioned and observed under 
a 40 × light microscope. Previous studies have intro-
duced criteria for evaluating tissues pathological changes 
[28–32].

 Statistical analysis
Statistical analysis was performed using SPSS 21 and 
GraphPad Prism 7 software. A P value less than 0.05 was 
considered statistically significant.

Results
 m6A genes related to sepsis were screened First
We performed sample screening on the data expres-
sion matrix of GSE54514 and excluded normal patient 
samples, retaining only patient samples with sepsis sur-
vival and death outcomes. We then compared these 
samples with 26 m6A methylated genes from the litera-
ture and finally identified 24 m6A methylated genes and 
their expression. Next, we used machine learning algo-
rithms of RF and Support Vector Machine (SVM) on the 
screened transcriptome data. We selected the expres-
sions of 24 m6A methylated genes as independent vari-
ables and included the processed data sets sepsis survival 
group and sepsis death group as outcome variables in 
the RF and SVM models, respectively. We analyzed the 
frame plots and cumulative residual distributions of the 
two models to determine which model performed bet-
ter. The RF had lower mean residual values compared 
to the SVM (Fig.  2a), whereas the inverse cumulative 
distribution line of residuals for the RF was located pre-
dominantly within the residual line of the SVM (Fig. 2b). 
In addition, the AUC value of RF reaches 1.000, which 
is higher than the 0.955 of SVM (Fig. 2c), which means 
that the gap between the predicted and actual values of 
RF is relatively small, thus proving that the model is more 
accurate. Therefore, we decided to use the RF model to 
predict m6A genes associated with sepsis.

Screening for hub genes
We screened 24 genes using difference-in-difference 
analysis and found significant differences in the expres-
sion of METTL3, METTL14, WTAP, RBM15, IGFBP1, 
and ALKBH5 between sepsis survival and death groups 
by box-and-line plot. By RF modeling, we further 
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determined the importance score of sepsis-related m6A 
genes. A higher score implies a higher importance of the 
gene in the disease, and we found that the top 6 scoring 
genes screened by RF modeling were consistent with 
the results derived from differential analysis (Fig.  3c). 

To screen different characteristic genes related to sep-
sis in more depth, we used the LASSO logistic regres-
sion method and cross-analyzed the sepsis characteristic 
genes screened by the Lasso and RF algorithms. Based on 
the analysis results of these three algorithms, we finally 

Fig. 2  Selection of models. A Residual box diagram, observe the residual values of RF and SMV models; B inverse cumulative distribution 
of residuals of RF and SMV; C comparison of ROC curves between RF and SMV

Fig. 3  Screening for sepsis survival factors: A Boxmaps of 26 differentially expressed genes of m6A regulators in patients who died and survived 
sepsis. B, C Analysis of random forest trees with differential genes. D LASSO regression analysis of differentially expressed genes was performed, 
and the genes were screened again
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identified the signature genes associated with the survival 
of sepsis with 4 to m6A methylation.

Three genes were screened by qRT‑PCR
We validated the screened four methylation regulators 
associated with sepsis in clinical samples. By collecting 
blood samples from sepsis patients with different out-
comes, including samples from 20 patients with sepsis 
death outcome and 10 patients with sepsis survival out-
come, and performing qRT-PCR for validation, we found 
that these 4 methylation regulators were statistically sig-
nificant (P < 0.05) in both the death and survival groups 
(Fig. 4). Meanwhile, we found that METTL14 was highly 
expressed in the sepsis survival patient group, which 
was inconsistent with the results of data analysis. There-
fore, we finally screened out three sepsis survival-related 
methylation regulators, METTL3, WTAP, and RBM15.

An effective predictive model was established
We screened m6A regulators from the machine-learning-
based GEO database that were significantly associated 
with sepsis: METTL3 WTAP RBM15. To more visually 
demonstrate the ability of these regulators in predict-
ing the survival and mortality groups, we constructed 
a nomogram (Fig.  5a). The calibration curve (Fig.  5b) 
showed that the predicted sepsis risk was highly con-
sistent with the actual observed data. In addition, we 
constructed a model for the prediction of clinical deci-
sion curves (Fig. 5c), and the results of the study showed 
that the net benefit of patients was higher when using 
METTL3, WTAP, and RBM15 as the characterized genes 
for predicting the outcome of sepsis, which indicated that 
the model was worth using. Finally, based on the clini-
cal decision curve, we further drew the clinical impact 
curve (CIC) (Fig.  5d). The red curve (numerical high 
risk) is used to indicate the number of people classified as 

positive (high risk) by the model at each threshold proba-
bility. At each threshold probability, the blue curve (indi-
cating the number of people at high risk with a result) 
represents the number of true positives. The results of the 
study reveal that the blue curve lies within the interval of 
the red curve, which proves the accuracy of the model 
in classification. This further confirms that METTL3, 
WTAP, and RBM15 can be considered as biomarkers 
that are significantly associated with the final outcome of 
sepsis. The generated model was subsequently validated 
using the microarray data set GSE95233. The diagnos-
tic accuracy of the model was evaluated utilizing ROC 
curves as well as the area under the ROC curve (Fig. 5e, 
f ).

Immunoassay of three sepsis survival‑related genes
We assessed one of the subtypes of changes in immune 
status. Gene set single sample gene set enrichment analy-
sis (ssGSEA) is an extension of GSEA to assess cellular 
infiltration in the sepsis microenvironment. Each GSEA 
ES indicates the extent to which genes are coordinately 
regulated upward or downward within a particular gene 
set. Immune cells include immune-enhancing cells (Th1, 
T cells, CD4 + cells, activated NK cells, activated B cells, 
etc.) and immune-suppressing cells (Th2, Treg, etc.).

By comparing sepsis patients as well as immune cells, 
it can be seen that CD56dim NK cells and Th17 cells 
were highly expressed in sepsis-dead patients, whereas 
neutrophils, eosinophils, and macrophages were more 
highly expressed in sepsis-survival group (Fig.  6a); in 
addition, we visualized the immune cells and the three 
sepsis-survival genes, and it can be seen that the cor-
relation coefficients between each gene and the cor-
responding correlation coefficients between each gene 
and the corresponding immune cells (Fig. 6b); then the 
genes were divided into high and low expression groups 

Fig. 4  Expression levels of METTL3, METTL14, WTAP and RBM15 in clinical blood samples of qRT-PCR *P < 0.05, **P < 0.01
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according to their expression, and by comparison, we 
could see that more immune cells, such as Treg, Th2, 
Th17, etc., showed high expression levels in the high 
expression group of METTL3 gene; only monocytes 
showed differences in the expression of the WTAP 
gene in the high expression group; and only RBM15 low 

expression level group showed the expression of the 
DCs as well as high expression of Th17.

Identification of three different m6A subtypes in sepsis
Based on three sepsis prognosis-related genes, we 
employed a consensus clustering algorithm to identify 

Fig. 5  Construction of nomogram model. A Nomogram model based on three key genes. B Predictive robustness of the nomogram model 
as shown by the correction curve. C Decision making based on nomogram models may benefit patients with sepsis. D To evaluate the clinical 
impact of this nomogram model through clinical  impact curves. E The ROC curve of the nomogram in dataset GSE95233. F The ROC curve 
of the nomogram in dataset GSE54514.
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different subtypes of sepsis and found that the clusters 
had the best stability when k = 3, i.e., cluster A, cluster B, 
and cluster C. As demonstrated by the heat map of the 
consensus matrix, these 3 clusters presented well-defined 
boundaries, which meant that they exhibited excellent 
cluster stability during successive iterations (Fig.  7a). 
Next, to further confirm the accuracy of the typing, we 
performed a component analysis (PCA) (Fig.  7b) and 
performed a difference analysis for the three different 
subtypes (Fig.  7c), which demonstrated that there were 
statistically significant differences in the expression of 
all three genes in this classification. In addition, based 
on the m6A classification of sepsis, our analysis of it in 
combination with immune cells yielded large differences 
in the expression of immune cells such as CD56dim NK 
cells, Treg, Th17 and Th2 (Fig.  7d). More differentially 
expressed immune cells appeared in these subtypes, so 
we hypothesized that patients with sepsis under such dif-
ferent subtypes had large differences in immune function.

Identification of three m6A typing differential genes 
and functional enrichment pathways
To investigate the potential biological activities of the 
m6A-related isoforms, we identified 821 m6A isoform-
associated DEGs among the three isoforms (Fig.  8a), 
followed by functional analyses to reveal the biological 

roles of the DEGs using the “GSEA” software. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analy-
sis showed that the DEGs were mainly enriched in 
chemokine signaling pathways (Fig.  8b). In the biologi-
cal process (BP) category (Fig.  8c), DEGs were mainly 
involved in the differentiation of monocytes, T cells, leu-
kocytes, and phagocytosis of immune cells; the differen-
tiation and phagocytosis of immune cells can recognize 
and eliminate pathogens, infected cells, and other for-
eign substances. The cell component (CC) class (Fig. 8d) 
is enriched mainly in vesicle lumens, specific granules, 
nuclear speckles, and Ficolin-1-rich granules; the molec-
ular function (MF) of DEGs (Fig.  8e) regulates mainly 
the ability to associate with the activity of nucleoside 
triphosphatases (e.g., ATPase), involves the ability to bind 
to purine nucleotides (e.g., ATP and GTP), and involves 
the ability to bind to calcineurin molecules related to the 
ability to bind, among others.

Identification of three different gene subtypes in sepsis
To further investigate the pathogenesis, we used a con-
sensus clustering method to categorize sepsis patients 
into different gene subtypes based on the 821 DEGs 
according to the three m6A-typed patients and named 
them gene subtype A, gene subtype B, and gene subtype 
C (Fig.  9a). In addition, we found that the differential 

Fig. 6  Immune cell analysis: A Significantly different immune cells in sepsis survival group and death group. B Correlation between immune cells 
and 3 sepsis survival genes. C, D, E According to METTL3, WTAP, RBM15, divided into high and low expression corresponding to the expression 
of immune cells.  * means P < 0.05, ** means P < 0.01, *** means P < 0.001
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expression levels of three sepsis survival genes and 
immune cell infiltration between different subtypes A, B, 
and C showed similar trends to the m6A typing results 
(Fig. 9c, d). The results again demonstrated the accuracy 
of delineating different subtypes. In addition, we com-
pared two different gene scores. The results showed that 
the m6A scores and gene scores showed a high degree of 
consistency between the two in terms of trend, and the 
m6A scores or gene scores of subtype C were signifi-
cantly higher than the high ones of subtype B (Fig. 10a, 
b). The relationship between the m6A subtypes, the 
gene subtypes, and the m6A scores was visualized in the 
Sankey diagram (Fig.  10c). Finally, the sepsis samples 
collected in our hospital were categorized into three sub-
types, A, B, and C. The chi-square test allowed us to con-
clude that out of 127 sepsis clinical samples, subtypes A, 
B, and B had 20, 9, and 2 deaths, respectively (Fig. 11a); 
the percentage of deaths among the three subtypes was 
46.5%, 19.6%, and 5.3%, respectively (Fig. 11b), with sub-
type A having the highest mortality rate, whereas subtype 
C had the lowest mortality rate, and the accuracy of the 

chi-square test could be concluded by Pearson chi-square 
and likelihood ratio (Fig. 11c).

Role of METTL3 in sepsis
Spleen flow cytometry analysis (Fig. 12a–c) showed that 
IL-17A expression in the three subgroups did not show 
statistically significant differences, while TNF-α tended 
to be significantly higher in the cecal ligation and punc-
ture (CLP) + STM2457 (METTL3 inhibitor) group, 
and CLP was higher than that in the normal group, and 
there were statistically significant differences between all 
groups.

The results of ELISA method showed (Fig. 12d) that the 
expression of inflammatory factors IL-6, IL-1β and TNF-
α was significantly increased in the CLP group compared 
with the Normal group, and the increase was more obvi-
ous in the CLP + STM2457 group, and there was a statis-
tically significant difference between all three groups.

The HE staining of lung, liver, kidney, and small intes-
tine tissues, as well as the pathological damage scores, are 
presented in Fig. 12e, f. HE staining of lung tissue showed 

Fig. 7  Consistent clustering and immune cell analysis of three sepsis survival related genes. A Consistency matrix of 3 sepsis survival genes when k 
= 3. B PCA expression profiles of 3 sepsis survival genes. C Histograms of differential expression of 3 sepsis survival genes in the gene. D Differential 
immune cell infiltration between m6A gene cluster A and m6A gene cluster B. *means P < 0.05, **means P < 0.01, ***means P < 0.001
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Fig. 8  Identification and functional enrichment pathways of three m6A genotyping differential genes. A A total of 821 DEGs were identified 
between subtypes A, B, and C. B KEGG pathway analysis of DEGs; C Enrichment of DEGs in the biological process (BP) category; D Enrichment 
of DEGs in the cell component (CC) category;  E Enrichment of DEGs in molecular function (MF)
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Fig. 9  Typing and analysis of 821 genes. A k = 3.826 DEGs genes consistency matrix. B Histograms of differential expression of three survival related 
genes in three sepsis gene subtypes. C The difference of immune cell infiltration among the three gene sets * means P<0.05, **means P < 0.01, 
***means P < 0.001 

Fig. 10  A Comparison of m6A and genotyping: Differences in m6A scores of sepsis subtypes A, B, and C under m6A typing. B Differences in m6A 
scores of sepsis subtypes A, B and C under genotyping. C Scankey chart shows the relationship between m6A typing, gene typing, and m6A 
scoring
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that (Fig.  12e), normal control group: mice with clear 
lung tissue structure, normal alveolar size, thin alveolar 
wall, no obvious alveolar and interstitial edema, no hem-
orrhage, no inflammatory cell infiltration, and no obvious 
pathological changes were seen. CLP group: compared 
with the normal control group, the alveolar wall of the 
mice in the CLP group was thickened, with alveolar cavi-
ties of varying sizes, the alveolar structure was damaged, 
and inflammatory cell infiltration could be seen in the 
interstitial space. CLP + STM2457 group: mice had more 
pronounced alveolar wall thickening, unequal size of 
alveolar cavities, severe destruction of alveolar structure, 
and massive inflammatory cell infiltration in the inter-
stitium. Staining of liver tissues showed that: hepatocytes 
around the liver sinusoids showed edema in the CLP 
group, and the cellular morphology was irregular, accom-
panied by a small amount of inflammatory cell infiltra-
tion, while the inhibition of the CLP + STM2457 group 
showed a more incomplete cellular structure, more pro-
nounced edema, and more inflammatory cell infiltration. 

In renal tissues, a small amount of renal tubular vacuolike 
degeneration with a small amount of inflammatory cell 
infiltration was observed in the CLP group, and a large 
amount of renal tubular vacuolike degeneration with 
irregular tubular morphology and inflammatory cell infil-
tration was observed in the CLP + STM2457 group. In 
the three groups of small intestinal tissues, there was an 
expansion of the subepithelial space at the tip of the small 
intestinal villi in the CLP tissue with moderate separation 
of the epithelial layer from the lamina propria, and a large 
amount of destruction at the tip of the small intestinal 
villi with exposure of the capillaries in the lamina pro-
pria and infiltration of inflammatory cells was seen in the 
CLP + STM2457 group. 

Discussion
Sepsis is a severe disease caused by systemic infec-
tion, associated with immune function, inflammatory 
response, and gene expression regulation [33, 34]. In 
this study, we identified sepsis-related m6A regulatory 

Fig. 11  Comparison of group information of sepsis patients and chi-square test results: A In 127 clinical samples of sepsis, the number of patients 
with subtype A, B and B who died; B proportion of patients who died in the three subtypes; C verification of Pearson chi-square and likelihood ratio 
data

(See figure on next page.)
Fig. 12  Role of METTL3 inhibitor STM2457 in CLP modeling mice. A, B Flow cytometry analysis of IL-17A and INF-γ expression differences 
between the three groups, C INF-γ was statistically different among the three groups in the histogram of cell loss results. D ELISA confirmed 
that IL-6, IL-1β, and TNF-α showed significant differences among the three groups. E HE staining images of lung, liver, kidney and small intestine. F 
Pathological injury score of each organ
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Fig. 12  (See legend on previous page.)
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factors: METTL3, WTAP, and RBM15 through bio-
informatics and qRT-PCR screening. The nomogram 
model constructed based on these three genes dem-
onstrated high predictive accuracy. We also found that 
CD56 natural killer cells and Th17 were highly expressed 
in the death group, while neutrophils, eosinophils, and 

macrophages were highly expressed in the survival 
group. Significant differences in immune cell expression 
and survival outcomes among three different subtypes 
were observed. Animal experiments revealed that mice 
with early stage sepsis administered METTL3 inhibitors 
had a higher mortality rate.

Fig. 12  continued
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Initially, we extracted the expression levels of 26 meth-
ylated genes from data set GSE54514, using RF, SVM–
RFE, and LASSO methods to filter out four differentially 
expressed genes. The significant correlation of METTL3, 
WTAP, and RBM15 with sepsis was verified through 
qRT-PCR.

METTL3 (methyltransferase-like protein 3) is an RNA 
methyltransferase, whose primary function is to add 
methyl groups to mRNA, thereby regulating gene expres-
sion [35, 36]. The function of METTL3 in inflammatory 
activity was further explored by researchers. It was elu-
cidated that METTL3-mediated m6A methylation pro-
motes neutrophil activation via modification of TLR4 
mRNA and then activates its translation and slows its 
degradation in lipopolysaccharide (LPS)-induced endo-
toxemia [37]. WTAP (Wilms’ tumor associated protein) 
is an RNA methyltransferase that plays a role in apopto-
sis and cell cycle control [38]. Previous research indicated 
that WTAP directly affects the release of inflammatory 
mediators such as TNF-α and IL-6, and its increased 
level is closely related to the exacerbation of inflamma-
tory response. Its knockout or inhibition may effectively 
alleviate inflammatory response [39]. The main function 
of RBM15 (RNA binding motif protein 15) is to partici-
pate in RNA splicing, maturation, and stability regula-
tion. In a study on an Alzheimer’s disease mouse model 
targeting miRNA-155/TNFSF10 to inhibit inflammation 
in the retina, RBM15 may play an important role [40]. In 
brief, METTL3, WTAP, and RBM15 are of great impor-
tance in regulating inflammatory responses and immune 
functions, and are closely related to the progression of 
inflammation. Therefore, we hypothesize that these three 
genes may also play an essectial part in the development 
and progression in sepsis.

Based on the three key genes identified, we constructed 
a nomogram model to predict the outcome of sepsis. 
After analysis, the AUC value of the model was 0.883, 
and the AUC value of the validation model reached 0.985, 
confirming the generalizability of model. In addition, the 
results of the model’s calibration curve, decision curve, 
and clinical impact curve indicated that this prediction 
model has high accuracy. This model not only provides 
clinicians with a powerful prognostic tool, but also helps 
identify high-risk patients earlier, enabling more aggres-
sive interventions and offering personalized treatment 
plans for patients.

Sepsis patients with different proportions of immune 
cells turned out with different prognoses. It was found 
that CD56dim natural killer cells and Th17 were highly 
expressed in patients with a fatal outcome. CD56dim nat-
ural killer cells are a subset of NK cells with strong cyto-
toxic activity. Researchers have discovered that in sepsis 
patients, the Researchers of T lymphocytes significantly 

decreased, while the proportion of NK lymphocytes sig-
nificantly increases [41, 42]. Zhang and colleagues found 
that autophagy within the body can attenuate Th1 and 
Th17 responses, thereby preventing sepsis induced by 
methicillin-resistant Staphylococcus aureus (MRSA) 
[43]. Underexpression of neutrophils, eosinophils, and 
macrophages was also observed in patients with a fatal 
outcome, was also observed that immunosuppression 
occurred within these patients [44]. An earlier article 
reported consistent conclusions as in the present study, 
implying that the immunosuppression in sepsis can be 
significantly alleviated by enhanced expression of Spns2/
S1P in macrophages [45]. The decreased level of immune 
cells in patients with sepsis indicated that these m6A 
methylated genes may be key targets leading to immune 
suppression. Clinically, intervening in the expression of 
these genes can improve the patient’s immune status and 
reduce mortality.

Using consensus clustering based on the similarity of 
m6A modulator expression levels, we found that when 
k = 3, the clustering had the best stability, dividing sep-
sis patients into three subtypes. Significant differences 
were observed in the expression of immune cells such 
as CD56dim, CD56bright natural killer cells, and Th17 
among different subtypes, implying that different sub-
types exhibit different immune states. Further analy-
sis revealed that in subtype A, the expression of Treg, 
monocytes, NK cells CD4 + , and other cells was signifi-
cantly lower compared to groups B and C, suggesting 
that patients in subtype A may experience immunosup-
pression, resulting in a higher mortality rate. Conversely, 
in patients of subtype C, the expression of immune cells 
was higher than in subtype B patients, indicating a lower 
occurrence of immunosuppression in the subtype C 
group. Chi-square tests was conducted on the clinical 
samples and the result showed significant differences in 
survival rates among the three classifications. The pro-
portion of patients with a fatal outcome in subtype C 
samples was only 5.3%, significantly lower than types A 
and B.

In this study, we performed pathway and functional 
enrichment analysis on 821 differentially expressed genes 
(DEGs) among the three subtypes. KEGG enrichment 
analysis results showed that DEGs were mainly enriched 
in the chemokine signaling pathway. Previous studies 
have found higher expression levels of chemokines in 
severe COVID-19 patients developing sepsis [46], high-
lighting the important role of chemokines in the progres-
sion of sepsis.

To better validate the accuracy of m6A typing, we con-
ducted gene subtype classification through consensus 
clustering among 821 DEGs across the three subtypes. 
We observed that when k = 3, the clustering had the best 
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stability, making it most appropriate to divide them into 
three types. By comparing with the m6A typing at the 
immune cell level and in terms of PCA scores, we dis-
covered that the trends in immune cell expression among 
the three subtypes in the m6A typing and gene typing 
were very similar, confirming the accuracy of the m6A 
typing. In addition, by calculating m6A scores through 
PCA analysis to quantify m6A subtypes, we found that 
both typing methods indicated that subtype C had higher 
scores, while the scores in types A and B had no statis-
tical differences. This suggests that in this model, sub-
types with higher m6A scores are less likely to experience 
immunosuppression, resulting in higher patient survival 
rates.

These immune analyses indicated that m6A methylated 
genes may influence the immune function of patients via 
regulation the expression of neutrophils, macrophages, 
and Th17 cells, leading to worsened conditions in sepsis 
patients. In addition, the outcomes differed between sep-
sis subtypes based on the expression levels of these m6A 
methylated genes. Future research should focus on devel-
oping small-molecule inhibitors or agonists targeting 
these genes to regulate immune responses and inflamma-
tion processes.

Previous studies have reported that endotoxins or viral 
infections upregulate the level of HIF-1α in DCs through 
the CXCR1 and ERK signaling pathways, stimulating 
the differentiation of CD4 + T cells into Th1 and Th17, 
thereby promoting disease progression [47]. TNF-α is 
primarily secreted by immune cell Th1, and IL-17A is 
mainly secreted by immune cell Th17. In our CLP model, 
splenic cell flow cytometry analysis of TNF-α and IL-17A 
revealed increased expression levels of TNF-α in sepsis, 
and inhibition of METTL3 resulted in higher expression 
levels of TNF-α; however, there was no significant differ-
ence in the expression of IL-17A among the three groups. 
This suggested that Th1 cells could play an important role 
in sepsis and that the METTL3 inhibitor STM2457 may 
regulate the progression of the disease by modulating 
Th1 cells, which is consistent with significant higher level 
of Th1 cells in patients with sepsis [48]. Previous studies 
have shown that the inflammatory cytokines IL-6, IL-1β, 
and TNF-α were significantly elevated during the inflam-
matory response phase of the body [49]. Our serum 
enzyme-linked immunosorbent assay results showed a 
significant higher expression level of these three inflam-
matory cytokines in septic mice and even higher lev-
els when inhibiting METTL3, indicating that inhibition 
of METTL3 could trigger a more severe inflammatory 
activity. Organ damage scores from HE staining showed 
more severe multi-organ (lung, liver, kidney, and intes-
tine) damage in CLP-induced septic mice and the organ 
injury was higher in METTL3-inhibited CLP-mice group. 

In short, severe inflammatory responses and organ dam-
age were observed in septic mice and both were more 
significant with METTL3 inhibition. Significant higher 
expression of Th1 cells after METTL3 inhibition trig-
gered a stronger inflammatory response and multi-organ 
dysfunction, ultimately resulting in a higher mortality 
rate in sepsis patients.

However, this study still has some limitations. First, the 
small number of clinical samples from septic patients we 
collected might introduce bias into the results. In addi-
tion, the unequal sample sizes between different outcome 
groups could render the differential expression analysis 
results meaningless or lead to false positives. Currently, 
the indicators in our prognostic model are limited to 
gene expression. In the future, we can add more clinical 
details to the nomogram. Although we have found that 
m6A methylation may affect prognosis by influencing 
the body’s immune function, its specific mechanisms and 
pathways still need further study.

 Conclusions
In this study, the m6A methylated genes METTL3, 
WTAP, and RBM15 were identified in sepsis. An accurate 
survival model was established, which revealed a lower 
probability of immunosuppression and a higher survival 
rate for the high m6A scoring isoforms compared to the 
other two m6A isoforms. It was also found that immune 
homeostasis is crucial in sepsis development and influ-
ences clinical outcomes. Furthermore, the study demon-
strated that inhibition of the METTL3 gene could worsen 
multi-organ functional damage in sepsis. This research 
provides new insights into potential biomarkers and per-
sonalized treatment strategies for sepsis management.
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