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Abstract 

Colorectal cancer (CRC) is currently ranked as the third most common type of cancer, contributing significantly 
to mortality and morbidity worldwide. Epigenetic and genetic changes occurred during CRC progression resulted 
in the cell proliferation, cancer progression, angiogenesis, and invasion. Angiogenesis is one of the crucial steps dur-
ing cancer progression required for the delivery of essential nutrients to cancer cells and removes metabolic waste. 
During angiogenesis, different molecules are secreted from tumoral cells to trigger vascular formation including epi-
dermal growth factor and the vascular endothelial growth factor (VEGF). The production and regulation of the secre-
tion of these molecules are modulated by different subcellular pathways such as NF-κB. NF-κB is involved in regula-
tion of different homeostatic pathways including apoptosis, cell proliferation, inflammation, differentiation, tumor 
migration, and angiogenesis. Investigation of different aspects of this pathway and its role in angiogenesis could 
provide a comprehensive overview about the underlying mechanisms and could be used for development of further 
therapeutic targets. In this review of literature, we comprehensively reviewed the current understanding and potential 
of NF-κB-related angiogenesis in CRC. Moreover, we explored the treatments that are based on the NF-κB pathway.
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Introduction
The latest report released by the Global Cancer Obser-
vatory in 2022 states that colorectal cancer (CRC) ranks 
as the third most widespread type of cancer worldwide 
and has a significant impact on the overall number of 
deaths caused by cancer [1]. The most significant mor-
phological prognostic factors are still the grade of the 
tumor, lymph node status and extent, and invasion of 
lymphatic and venous system [2]. Metastasis develop-
ment is a significant worry for both patients and cli-
nicians due to its potential fatality and homeostasis 
disruption (Fig.  1) [3, 4]. Moreover, metastasis and 
unrestricted invasive growth of malignancies depend 
on angiogenesis, which is suggested that tumors infre-
quently metastasize without the presence of angio-
genesis [5]. The fundamental factors essential for the 
progression of metastatic CRC are the routes activated 
by the epidermal growth factor receptor (EGFR) and 
the vascular endothelial growth factor (VEGF) [6]. 
Angiogenesis, an intricate phenomenon marked by 
the development of fresh blood vessels from precur-
sor endothelial cells, is involved in cancer development 
and is recognized as one of the principal features of this 
disease. Considering the nutritional demands of malig-
nant tumor cells, encompassing essential elements such 
as oxygen and growth factors, it becomes imperative 
for them to be surrounded by a suitable blood supply 
to facilitate their expansion. The generation of tumor 
vasculature significantly contributes to the proliferation 
and dissemination of tumors. It has been postulated 
that the initiation of tumor development is strongly 
connected to the occurrence of tumor angiogenesis [7]. 
Receptors and ligands that are in tight regulation, medi-
ate this process [8, 9]. In addition, a diversity of sub-
stances that stimulate the growth of blood vessels, such 
as endothelial growth factor (EGF), fibroblast growth 
factor (FGF), VEGF, transforming growth factor (TGF), 
platelet-derived growth factor (PDGF), thrombospon-
din-1 (TSP-1) and, involve in controlling this biologi-
cal process [10–15]. It has been shown that numerous 
pro-angiogenic molecules, such as matrix metallopro-
teinase-9 (MMP-9), interleukin-8 (IL-8), and VEGF, are 
downregulated in tumor cells. Additionally, inhibition 
of NF-κB in these cells blocks their ability to develop 
angiogenesis [16]. Besides, studies have demonstrated 
that NF-κB is an essential factor in the viability of blood 
vessel endothelial cells when subjected to TNF, a type 
of cytokine frequently found in inflammation linked to 
cancer [17].

NF-κB, a specific protein known as “kappa-light-
chain-enhancer” of activated B cells, is essential for the 
proper functioning of the immune system [18, 19]. It 
acts as a transcription factor, mediating communication 

between the cell’s cytoplasm and nucleus, and control-
ling the expression of genes related to cytokine recep-
tors, cytokines, and adhesive molecules involved in the 
inflammatory immune response [20, 21]. It plays a crucial 
function in numerous cellular processes in eukaryotes, 
comprising angiogenesis, inflammation, cell prolifera-
tion, and transformation [22, 23]. When the NF-кB is 
turned on, it moves to the nucleus and interacts with a 
specific DNA pattern, aiding in the activation of tran-
scription [24]. Moreover, the elevated activity of NF-кB 
may contribute to the promotion of angiogenesis [25]. 
Recent research has additionally demonstrated that 
reducing NF-кB expression can result in reduced prolif-
eration of synovial cells with a fibroblast-like appearance, 
induced cell death, and inhibited angiogenesis [26, 27]. 
With the improvement of therapeutic methods including 
immunotherapy, chemotherapy, radiotherapy, targeted 
therapy, and surgical resection, the patient’s 5-year sur-
vival with CRC has been improved considerably [28–30], 
although disease relapse and metastasis are still chal-
lenging for CRC treatment [31]. Thus, uncovering the 
molecular pathways of CRC to identify novel targets and 
subsequently develop novel treatments is urgent.

In this paper, we aim to dissect the complex interplay 
between NF-κB signaling and angiogenesis in CRC, shed-
ding light on potential therapeutic avenues for improved 
patient outcomes.

The role of NF‑κB in cancer: development, 
progression, and metastasis
NF-kB is a multifunctional transcription factor that 
governs the expression of several genes involved in cel-
lular proliferation and cell survival in a broad spectrum 
of tumors in the primary signaling pathway. The active 
transcription factor NF-κB comprises a dimer made 
up of two subunits, p50 and p65 (also known as RelA) 
(Fig. 2) [21, 32]. When cells are not stimulated, the het-
erodimer is fully enclosed in the cytoplasm due to its 
binding with p65 inhibitor of kappa B-α (IKBα) [33]. A 
diverse range of mechanisms elucidated the depend-
ence of malignant cells on the activated form of NF-κB, 
including viral and fusion proteins, mutations in IκΒ, 
heightened activity of IKK, excessive expression of recep-
tors and ligands, in addition to mutations in NF-κB [34]. 
Upon activation, IKBα undergoes phosphorylation by the 
IKB kinase (IKK) and is subsequently targeted for deg-
radation through the proteasome pathway. This process 
leads to the release of NF-κB, allowing it to move into the 
nucleus, where it initiates the transcription of specific 
genes that modulate cellular migration, inflammation, 
and proliferation. In comparison to normal cells, cancer 
cells exhibit irregular and persistent NF-kB activation, 
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which significantly involves various cancer-developmen-
tal signaling cascades [35, 36]. Furthermore, NF-κB is 
implicated in a mutual association with different tumor 
suppressive agents. The components that restrain activ-
ity, in diverse manners, disrupt the functioning of NF-κB 
at a microscopic level. NF-κB, by engaging with co-part-
ners p300 and CREB-binding protein (CBP) and elevating 
the amounts of murine double minute-2 (MDM2) pro-
tein, obstructs the adequate functioning of the cancer-
inhibiting protein p53 [37–39]. The ongoing stimulation 

of NF-κB in instances of gastrointestinal, hepatocellular, 
cutaneous, cerebral, prostatic, pulmonary, and hemat-
opoietic malignancies has been observed [40].

The regulatory factor NF-κB gave an essential part 
in managing the expression of various genes that are 
involved in both the early and advanced stages of aggres-
sive tumor growth. These genes, such as cyclinD1, 
COX-2, Bcl2, VEGF, FLIP, ICAM-1, cIAP1, TRAF2, and 
MMP-9, are essential for enabling invasion and angio-
genesis [41, 42].

Fig. 1 The processes that lead to the development and growth of CRC involve multiple stages, starting with the initiation of a tumor 
through the transformation of healthy intestinal cells (IECs). This can occur due to various factors, such as mutations that occur spontaneously 
or exposure to harmful substances in the environment. Inflammation can also trigger changes in the genetic makeup (epigenetic changes) 
of intestinal cells, leading to tumorigenesis. The uncontrolled growth and division of these “initiated” cells, triggered by genetic mutations 
that promote hyperproliferation, such as of APC or other genes involved in the WNT pathway, along with additional mutations in genes like KRAS, 
TP53, or TGFBR2, and cancer-promoting factors in the tumor’s surroundings, ultimately results in the development of malignant tumors, a process 
referred to as tumor promotion. Further alterations and modifications to the tumor microenvironment (TME) result in the ability for these 
tumors to eventually spread to other body parts. The epithelial tissue of the tumor consistently communicates with cells in the TME using 
cytokines, chemokines, and growth factors. The initiation of tumor creation is heavily influenced by the existence of inflammation, which leads 
to the production of reactive oxygen species (ROS) and epigenetic changes. Furthermore, the provision of growth factors and pro-inflammatory 
cytokines also contribute to the advancement of cancer. Moreover, tumors could induce a pro-inflammatory environment by releasing cytokines 
and chemokines, resulting in a continuous cycle that aids in tumor progression. Several different kinds of cells play a role in this process, 
including cancer-linked fibroblasts, cells from CRC, dendritic cells, the extracellular matrix, loss of heterozygosity, natural killer cells, macrophages 
linked to tumors, and neutrophils associated with tumors
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The control of cell growth and viability is influenced 
by this signaling mechanism, which remains consist-
ently stimulated, resulting in the continual activation 
of genes related to cell proliferation, including cyclin 
D1, cyclin E, Myc, cyclin-dependent kinase (CDK)-2, 
and IL-6. As the improper regulation of NF-κB is fre-
quently observed in cancerous cells, blocking this path-
way could potentially limit cell proliferation [43]. The 
TME is involved in the development and progression 
of cancer cells, particularly in the case of CRC. TNFα 
and IL-6 have a central role in facilitating the interplay 
between cancer and inflammatory processes within the 
TME [44–46]. The high expression of TNF-α and IL-6 
facilitates invasion, angiogenesis, metastasis, and ther-
apeutic resistance [47]. Pro-inflammatory cytokines 
including IL-6 and TNF-α have mutual relationship 
with NF-кB; They could activate NF-кB while NF-кB 
induces the expression of them [48–51]. For instance, 
TNF-α activates NF-кB through induction of phospho-
rylation of IKB and further degradation of this protein 
allowing NF-κB to translocate to the nucleus and ini-
tiate transcription of target genes [52, 53]. IL-6 acti-
vates STAT-3 to promote the activation of NF-кB [49]. 
On the other hand, sustained production of TNF-α 
and IL-6 depend on the activation of NF-κB as during 
inflammatory processes NF-κB induced the expression 
of TNF-α [48, 50, 51]. The initiation of NF-κB can addi-
tionally trigger Stat3 activation, leading to amplified 

connections between cancerous cells and the TME [54]. 
The ability for tumors to continue growing is mainly 
dependent on how malignant cells interact with the 
TME [55].

CRC metastasis is a multifaceted process, includ-
ing extracellular matrix degradation, decreased cell 
adhesion, the development of the cell’s migratory abil-
ity, angiogenesis and alterations in the TME [56–58]. 
Additionally, multiple functional proteins, such as TPx, 
matrix metalloproteinases (MMPs), and VEGF regu-
late this process [59–61]. These proteins alter the func-
tion of many internal communication pathways within 
the cell, including the NF-κB pathway, thereby affect-
ing the metastasis and invasion potential of CRC [62]. 
Ryan and colleagues successfully showed that inhibit-
ing NF-κB significantly impedes the dissemination of 
CT-26 colon cancer cells in a mouse model of perito-
neal metastasis, thus further validating these findings 
[63].

NF-ĸB can activate multiple transcription factors that 
promote the process of epithelial–mesenchymal transi-
tion (EMT) and the consequent spread of different types 
of cancer, such as ZEB2, snail, and twist [64–66]. More-
over, the mechanism of PI3K, AKT, and IKKα has been 
pinpointed as a key factor in regulating the function of 
NF-κB and β-catenin in human CRC cells, resulting in 
important influence on the expression of genes associ-
ated with the spread and growth of cancer cells [67].

Fig. 2 Activation of NF-κB has a substantial influence on CRC. It triggers the expression of multiple genes involved in various processes, 
including cell proliferation, survival, angiogenesis, inflammation, and the progression of tumors and metastases
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Angiogenesis in colorectal cancer
Angiogenesis is a highly intricate process involving a deli-
cate balance of stimulating and inhibitory factors respon-
sible for the formation of new blood vessels. This plays 
a vital role in the progression of CRC and other types 
of cancer [68, 69]. Growth agents including epidermal 
growth factors (EGFs) and VEGF, TGF-β, TGF-α, FGF-2, 
PDGF, angiopoietins, membrane-bound agents (ephrins, 
integrins, MMPs, cadherins, EphB4, and hypoxia-induc-
ible factor-1 (HIF-1) are the main molecules involved in 
angiogenesis [70, 71]. A dysregulation between anti- and 
pro-angiogenic factors, triggered by tumor cell mutations 
or hypoxia, activates the angiogenic switch and endothe-
lial cell proliferation [72, 73]. Rapid tumor growth can 
induce hypoxia (oxygen deprivation), prompting HIF-1 
activation and the release of pro-angiogenic signals for 
cell survival [73]. In CRC, the VEGF and EGFR pathways 
stand out as particularly important regulators of angio-
genesis [74]. While numerous factors might have effect 
on VEGF pathway, hypoxia is the primary driver of its 
regulation in angiogenesis. This occurs through the acti-
vation of HIF-1 and HIF-2, both triggered by hypoxic 
conditions [75]. The process of angiogenesis initiation 
in CRC happens at an early stage, brought about by the 
lack of oxygen and nutrients. HIF-1, a protein complex 
made up of HIF-1α and β subunits, plays a crucial role 
in regulating gene expression during this response. When 
oxygen is limited, HIF-1α becomes more stable and part-
ners with HIF-1β to form a functional complex. This 
intricate structure then binds to hypoxia response ele-
ments (HREs) and initiates the transcription of various 
genes that are stimulated by decreased levels of oxygen 
[68]. HIF-1α overexpression is observed in CRC and is an 
independent prognostic marker, correlating with elevated 
expression of cyclooxygenase-2 (COX-2) and VEGF-A, 
the latter linked to prostaglandin E2 (PGE2) production 
and increased vessel formation. Consequently, PGE2 has 
also been proposed as a prognostic marker in CRC [76]. 
VEGF, particularly VEGF-A, is the key driver of angio-
genesis in CRC [77, 78]. It binds to tyrosine kinase recep-
tors (VEGFRs), primarily VEGFR-2 on endothelial cells, 
migration, triggering proliferation, sprouting, and tube 
formation. VEGF also inhibits endothelial cell apopto-
sis, activates extracellular matrix (ECM) degradation 
enzymes, and regulates vascular permeability [79, 80]. 
Moreover, VEGF signaling is central to CRC biology, pro-
moting cell proliferation through protein kinase C and 
MAP kinase pathways and enhancing the EGFR pathway 
[69, 74]. VEGFR overexpression is observed in CRC, and 
this overexpression, along with increased PlGF expres-
sion, correlates with poor prognosis and metastasis [81].

Angiopoietin-1 and 2 are additional factors that con-
tribute to angiogenesis. Both of these proteins promote 

angiogenesis and increase endothelial cell migration for 
formation of new vessels, with higher Angiopoietin-2 
levels linked to poorer outcomes in CRC {Fagiani, 2013 
#552}[82]. Conversely, lower Angiopoietin-2 levels pre-
dict a better response to bevacizumab therapy, a VEGF 
inhibitor, in metastatic CRC patients [83, 84]. Under-
standing these diverse pro-angiogenic pathways across 
different cancers opens avenues for targeted therapeutic 
interventions. Anti-angiogenic drugs like bevacizumab, 
which blocks VEGF activity, have shown promise in CRC 
and other malignancies, highlighting the potential of har-
nessing these biological mechanisms for improved cancer 
treatment [85].

Influenced by NF-κB, the progression of CRC and 
the formation of new blood vessels (angiogenesis) are 
significantly accelerated due to the promotion of pro-
angiogenic factors, such as VEGF [86]. NF-κB normally 
remains inactive in the cytoplasm, bound by inhibitory 
proteins (IκBs). However, upon activation by various 
stimuli, IκBs are degraded, enabling NF-κB to move to 
the nucleus and modify the expression of genes involved 
in various cellular processes [87]. The NF-κB pathway 
alters the rate of expression of several crucial genes asso-
ciated with tumor angiogenesis like MMP-2, PDGF-BB, 
and MMP-9 and also amplifies the pro-angiogenic effects 
of other signaling pathways (e.g., Wnt/β-catenin) through 
interactions, further promoting tumor vascularization 
[88]. Therefore, understanding the intricate relation-
ship between NF-κB and angiogenesis in CRC develop-
ment is crucial. Targeting this pathway could offer novel 
therapeutic strategies to impede tumor growth and pro-
gression by restricting angiogenesis and availability of 
nutrients.

NF‑κB‑related angiogenesis in CRC development
NF-κB-mediated angiogenesis is significantly involved 
in promoting tumor growth and development. Recent 
studies have highlighted the consistent activation of 
the NF-κB in CRCs and also other diverse cancer types, 
including leukemias, lymphomas, melanomas, breast 
cancers, and pancreatic malignancies [89]. These stud-
ies suggest an association between activated NF-κB and 
detrimental features of tumor cells, comprising, boosted 
resistance to apoptosis, enhanced cell proliferation and 
metastatic potential [90].

NF-κB pathway holds a critical position in CRC pro-
gression by regulating various cellular processes [91]. 
NF-κB induces the expression of anti-apoptotic proteins, 
comprising Bcl-2-associated athanogene-1 (BAG-1), 
B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra-
large (Bcl-xL), thereby promoting cell survival and 
inhibiting apoptosis [91]. Additionally, promoted 
NF-κB activity in CRC enhances the expression level of 
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pro-inflammatory cytokines (IL-6, TNFα, IL-1β), angio-
genic agents (IL-8, HIF-1α, VEGF), and metastatic genes 
(cytoskeletal genes, chemokines, MMPs [92]. Further-
more, abnormal activation of upstream regulators, spe-
cifically protein arginine methyltransferase 5 (PRMT5), 
has been proven have an important part in the NF-κB-
induced impact on proliferation, anchorage independ-
ence, and migratory capabilities of CRC cells [93, 94].  It 
was also shown that High B7-H3 expression, an immune 
checkpoint protein regulating CRC angiogenesis, related 
to increased VEGFA expression in CRC patients through 
the NF-κB signaling pathway. This finding supports the 
potential role of the B7-H3/NF-κB/VEGFA axis in CRC 
angiogenesis [95]. Constant activation of NF-κB in CRC 
demonstrated its significant part in angiogenesis, ulti-
mately promoting tumor growth. NF-κB activation was 
inhibited by silencing IKKβ, a crucial component in the 
activation pathway, via small interfering RNA (siRNA). 
In vivo experiments demonstrated a palpable suppression 
of tumor growth and reduced vascularization in these 
knockdown cells [89]. Other studies utilizing microar-
rays and protein arrays already established a link between 
NF-κB activation and elevated expression of several angi-
ogenic chemokines [96, 97].

A recent investigation has pinpointed crocin, a type of 
nutrient found in the Himalayan crocus plant, as a pos-
sible candidate for targeting the NF-κB pathway, provid-
ing a hopeful avenue for hindering the growth of new 
blood vessels and spread of cancer cells in CRC. Research 
has shown that the compound crocin can significantly 
reduce the production of VEGF and block the activa-
tion of NF-κB in human CRC cells stimulated by TNF-α. 
Additionally, crocin was found to strongly inhibit NF-κB 
activity in a dose-dependent manner, even in the absence 
of TNF-α. Altogether, the results imply that crocin could 
potentially suppress both angiogenesis and metastasis 
through its ability to regulate NF-κB and counteract the 
TNF-α/NF-κB/VEGF pathway [98].

Another significant developmental way that NF-κB 
interact with TME in CRC [99]. This complex interplay 
creates a pro-inflammatory and supportive environment 
for cancer cells. The heightened levels of NF-κB activ-
ity observed in cancerous cells lead to the liberation of 
inflammatory mediators, like IL-6 and TNF-α, within 
TME [100]. In relation to CRC, TNF-α and IL-6 are key 
players in mediating inflammation and promoting can-
cer progression within the TME [45, 46] and high levels 
of these cytokines in tumor tissues and serum correlate 
with poor patient prognosis [101]. The TME is influenced 
by these cytokines, causing various kinds of cells such as 
CAFs, immune cells, and non-cancerous cells to produce 
IL-6 and TNF-α. This process creates a cycle of positive 
reinforcement that strengthens NF-κB activation [54, 55, 

102].These cytokines contribute to invasion, angiogen-
esis, metastasis, and therapeutic resistance in CRC [47, 
55]. Additionally, mutations in other signaling pathways, 
like RAS-RAF and miRNA dysregulation, can enhance 
NF-κB activity [103]. Once the NF-κB pathway is acti-
vated in cancer cells, there is an increase in the expres-
sion of multiple genes that promote the creation of an 
environment that supports both inflammation and tumor 
growth. These genes produce molecules such as Bcl-xL 
and Bcl-2, which prevent cell death, as well as inflam-
matory substances like TNF-α and IL-6, and factors that 
promote the formation of blood vessels, such as VEGF 
and IL-8. Additionally, the expression of chemokines 
that contribute to inflammation is also amplified [1]. 
This further perpetuates the pro-inflammatory state and 
promotes tumor growth, invasion, and metastasis [92]. 
Understanding this intricate interplay between NF-κB 
and the TME holds immense potential for developing 
novel therapeutic strategies to target cancer progression.

Epi/genetic alterations are crucial for the step-wise 
CRC development, accumulating over time and driv-
ing its progression [104]. Over half of genetic alterations 
observed in patients with CRC through cBioportal for 
Cancer Genomics involve the NF-κB signaling pathway, 
highlighting its significant role in the disease [91].

NF-κB serves a crucial function in regulating the 
immune system and impacting angiogenesis by governing 
critical genes in both the classical and alternative path-
ways. When triggered by different ligands, the canonical 
pathway prompts the movement of p65 and p50, which 
then has the potential to activate the expression of genes 
that play a role in angiogenesis [105]. The non-canonical 
pathway, responding to specific stimuli, such as ligands 
of LTβR, BAFFR, CD40, and RANK,  involves p100 pro-
cessing and might also impact angiogenesis by directly 
regulating relevant genes. MicroRNAs (miRNAs) play a 
complex role in CRC progression, impacting both onco-
genesis and tumor suppression. Notably, the mutational 
landscape of CRC can influence its miRNA profile [106]. 
These specific miRNAs function by targeting the mRNA 
in order to control the production of proteins that have 
important function in the NF-κB pathway. Upon further 
investigation, it has been confirmed that multiple miR-
NAs have verified NF-κB binding sites within their pro-
moters, indicating direct manipulation by NF-κB [107]. 
These miRNAs, often involved in modulating inflam-
matory responses, can exert either pro- or anti-inflam-
matory effects [108]. This complex interplay between 
genetics and epigenetics further emphasizes the intricate 
regulatory network governing NF-κB-related angiogen-
esis. Other genetic alterations, including mutations, dele-
tions, and amplifications, affect different components of 
the NF-κB pathway in CRC patients. This includes not 
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only mutations within the NF-κB family members them-
selves, but also polymorphisms and alterations in other 
regulatory genes of the pathway [104].

For example, in a study, analysis of 348 colon cancer 
samples of CRC samples revealed significant genetic 
changes in multiple NF-κB family member genes, includ-
ing RelA (2.5%), RelB (5%), Rel, NF-κB1, and NF-κB2. 
This suggests a potential role for these alterations in 
CRC progression. Different types of mutations were 
identified, including missense, deletion, insertion, and 
nonsense mutations, affecting various protein regions 
[109]. Moreover, apart from changes in the NF-κB fam-
ily, numerous modifications in the genes involved in con-
trolling the NF-κB signaling pathway have been observed 
in individuals with CRC. This underscores the significant 
impact of the pathway on the development of CRC. A 
recent research project investigated the NF-κB path-
way in CRC by analyzing 84 key genes in paired tumor 
and peritumoral tissues compared to normal colon. As 
expected, most genes were upregulated in tumors, par-
ticularly those in the IL-1 signaling pathway (e.g., IL1A, 
IL1B, IRAK1, IRAK2, CHUK) [105]. The extensive pres-
ence of genetic alterations in the NF-κB pathway in CRC 
suggests promising avenues for developing novel thera-
peutic strategies to target this pathway and potentially 
treat the disease.

Treatments‑based NF‑κB signaling pathway in CRC 
For resectable CRC, surgical excision remains the cor-
nerstone therapy; inoperable cases require conventional 
approaches, including immunotherapy, radiotherapy, and 
chemotherapy. However, these modalities are encum-
bered by cytotoxicity and non-selectivity, engendering 
adverse effects [110, 111]. According to the advancement 
and confinement of the CRC, combining the mentioned 
treatments can be used. Even with such strategies, recur-
rent CRC and the subsequent evolution of multidrug 
resistance remain prevalent, affecting approximately 50% 
of the cases [112]. Despite considerable advancements 
in both the screening and treatment processes of CRC, 
the rate of deaths remains alarmingly high [113]. There-
fore, it is important to create innovative treatments for 
CRC that specifically target resistant tumors. This section 
explores some of these emerging treatments that impact 
the NF-κB signaling pathway in CRC.

Macelignan
Recently, the use of natural products in cancer therapy 
has become a novel topic, given their numerous benefits, 
such as having multiple targets, established use, cost-
effectiveness, and minimal toxicity [114]. Macelignan, 
derived from nutmeg, is garnering interest for its diverse 
biological functions, which include neuroprotection, 

antioxidation, and anti-inflammatory actions. However, 
the effects of macelignan on macrophage polarization 
within the TME have yet to be elucidated [115, 116].

Macrophages, integral components of the TME, can 
be divided in subgroups, M1 and M2 subtypes (classi-
cally and alternatively activated, respectively), in inter-
action with environmental signals [117]. M2 subtype 
macrophages contribute to increased tumor progression 
and development by enhancing invasion, migration, and 
proliferation and are associated with poor prognosis 
[118]. Research has shown that M2 macrophages con-
tribute to the advancement of tumors through the pro-
duction of specific substances, such as IL-1, IL-17, and 
IL-6, which facilitate the growth of tumors [119]. Within 
the TME, Tumor-associated macrophages (TAMs) are 
critical in promoting angiogenesis, metastasis and tumor 
growth. One study demonstrated that TAMs derived 
from malignant gastric cells were predominantly M2 
subtype, implicating M2 macrophages in the metastasis 
of gastric cancer [120]. Che N et al. discovered that mac-
elignan can disrupt the polarization of M2 macrophages 
by stimulating the ROS-dependent PI3K/AKT path-
way, which effectively impedes the progression of CRC-
induced liver cancer through the IL-1β/NF-κB signaling 
pathway.

To conclude, macelignan, a compound derived from 
nutmeg, shows promise as a cancer treatment through 
its impact on macrophage polarization within the TME. 
It specifically acts on M2 macrophages, recognized for 
their role in tumor growth, by obstructing M2 polariza-
tion through the ROS-regulated PI3K/AKT pathway. This 
significantly hinders CRC metastasis through the IL-1β/
NF-κB pathway, highlighting macelignan’s effectiveness 
in interfering with crucial tumor progression processes.

Parthenolide
Parthenolide (PTL), derived from the Tanacetum par-
thenium, commonly known as feverfew, primarily inhib-
its the NF-κB signaling pathway. Treatment with PTL is 
linked to reduced angiogenesis, proliferation, migration, 
and invasion across various cancers, including lymphoma 
and breast cancer [121, 122]. Notably, in cell models of 
CRC, PTL impedes the effects of hypoxia, limits the rate 
of cell growth, and reduces invasiveness by interfering 
with the signaling of hypoxia-inducible factor 1 [123, 
124]. Furthermore, it has been demonstrated that PTL 
effectively stops the functioning of NF-κB by preventing 
its breakdown and hindering its ability to bind to DNA 
[125].

Gehren and colleagues [126] demonstrate that the 
PTL’s antitumor effect on CRC cells is not restricted to 
inhibiting the NF-κB pathway; it also appears depend-
ent on the p53 mutation status. Consequently, PTL’s 
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blockade of the NF-κB pathway not only decreases 
proliferation of cells, but also encourages apoptosis, 
diminishes the invasiveness activity of CRC cells, and 
restores organization by re-establishing E-cadherin-
mediated cell-to-cell adherence. In summary, PTL a 
compound extracted from feverfew with sesquiterpene 
lactone structure, obstructs the NF-κB pathway, result-
ing in decreased cellular growth and invasion as well as 
increased programmed cell death in CRC. This inhibitory 
effect is modulated by the PT53 mutation status, under-
scoring PTL’s complex role in CRC therapy through its 
impact on critical cancer-related pathways and modulat-
ing tumor cell dynamics.

Ginger
Natural deep eutectic solvents (NaDES) are recognized 
as eco-friendly solvents. They are widely employed due 
to their beneficial attributes, which include straightfor-
ward synthesis, affordability, minimal toxicity, eco-sus-
tainability, biodegradability, non-flammability, and little 
to no volatility [127]. Additionally, ginger, scientifically 
known as Zingiber, possesses significant medicinal prop-
erties. Ginger has demonstrated a broad spectrum of 
pharmacological effects, notably in combating metabolic 
syndrome, cancer, inflammation, and bacterial infections 
[128]. It also acts as a potent antioxidant. The primary 
source of health benefits from ginger extract is due to its 
abundant amount of bioactive polyphenols, specifically 
shogaols and gingerols [129].

Research on the chemopreventive properties of gin-
ger extract against CRC has garnered interest. The pro-
cess can effectively hinder the rapid growth of cancerous 
cells and trigger programmed cell death in diverse types 
of abnormal cells in  vitro [130]. Additional studies are 
required concerning the anticancer effects of ginger 
extract processed with a natural deep eutectic solvent 
(NaDES) on CRC cells resistant to chemotherapeutic 
drugs. The C-X-C chemokine receptor type 4 (CXCR4) is 
involved in regular cellular functions and is essential for 
regulating embryogenesis [131]. Contrastingly, increased 
expression of CXCR4 is observed in a variety of neo-
plasms, like CRC [131, 132]. Increased levels of CXCR4 
have been linked to an unfavorable prognosis and the 
emergence of resistance to drugs in patients with CRC 
[132]. Specifically, the overexpression of CXCR4 in CRC 
cells resistant to oxaliplatin appears crucial for the emer-
gence of resistance to oxaliplatin [131]. Moreover, the 
pathways of communication that are triggered by CXCR4 
may greatly influence the potential for cells in CRC to 
become resistant to drugs [133].

Furthermore, a multitude of studies have shown that 
an increase in NF-κB signaling significantly enhances 

the ability of cancer cells to withstand the effects of 
chemotherapy. This connection between the activation 
of NF-κB and the emergence of drug-resistant tumors 
provides strong evidence of its significant impact on 
chemotherapy resistance [134]. Additionally, the activa-
tion of sNF-κB has the potential to increase the levels 
of CXCR4 through its binding to the CXCR4 promoter, 
resulting in heightened migration and spread of cancer 
cells [135]. A study by Lee and colleagues [136] revealed 
that the use of fermented NaDES-treated ginger extract 
has the capacity to increase the efficacy of oxaliplatin in 
treating CRC cells that have developed a resistance to it. 
This is achieved by suppressing the activity of CXCR4 
and the NF-κB signaling pathway. In essence, incorporat-
ing NaDES-treated ginger extract into treatment plans 
has the potential to enhance the effectiveness of oxalipl-
atin against drug-resistant CRC by inhibiting the CXCR4 
and NF-κB pathways. This makes the extract a promising 
supplement to traditional treatment methods. The poly-
phenolic components in the extract are likely to interfere 
with crucial mechanisms associated with chemoresist-
ance, cell movement, and the persistence of cancer cells, 
thereby accentuating the value of including bioactive 
compounds sourced from foods within the cancer treat-
ment paradigm.

Conclusion
In conclusion, this examination places primary emphasis 
on the role of NF-κB in the growth and spread of CRC, 
specifically in relation to the process of angiogenesis. Fur-
thermore, the potential areas for intervention were spe-
cifically emphasized. The overall process is regulated by a 
complex balance of factors that either stimulate or inhibit 
angiogenesis. The complex interplay of molecules and 
pathways involved in angiogenesis including VEGF, EGF, 
and HIF-1α along with NF-κB underscores the potential 
for targeted therapeutic interventions, including the use 
of anti-angiogenic drugs like bevacizumab. However, fur-
ther studies would be needed for better understanding 
of the role of these molecules, their interaction, and also 
their upstream regulators for better design of pharma-
cological molecules in the CRC field. Therapeutic strate-
gies targeting the NF-κB pathway could be a promising 
therapeutic target for inhibition of angiogenesis and fur-
ther reduction of tumor progression in the field of CRC 
treatment. Finally, further thorough investigations are 
required to comprehend better the angiogenetic  role of 
NF-κB in CRC. Also, there is a rising desire for effective 
techniques to better translate the in  vitro and animal 
study outcomes into the clinic (Table 1).
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Table 1 NF-κB-related angiogenesis in colorectal cancer

Agent (year) Sample study Effect References

Curcumin (2016) Human tumor-derived colorectal adenocarci-
noma cell lines

Curcumin and oxaliplatin decreased NF-κB 
pathway chemokine expression, enhancing CRC 
treatment efficacy

[137]

Ginsenoside (2017) Human CRC cell lines Ginsenoside exerted antitumor effects in CRC by 
downregulating C/EBPβ/NF-κB signaling, inhibiting 
cell proliferation

[138]

Resveratrol (2018) Human colon cancer lines Resveratrol modulated PD-L1 via NF-κB, enhanc-
ing tumor cell sensitivity to immunotherapy, 
and induces apoptosis

[139]

Morin (2019) Human CRC cell lines Morin impacted CRC cases by inhibiting tumor 
growth via NF-κB signaling suppression

[140]

Curcumin analog (2019) Human colon cancer lines Curcumin analog deactivated NF-κB, reducing 
cancer stem cell phenotype and increasing 
apoptosis in CRC 

[141]

Green tea (2019) Human CRC cell lines Green tea enhanced CRC sensitivity to chemo-
therapy by hindering NF-κB/miR-155-5p pathway

[142]

Gilteritinib (2020) Human CRC cell lines Gilteritinib induced p53 up‐regulated modula-
tor of apoptosis-mediated apoptosis in CRC 
via NF-κB pathway, enhances chemosensitivity

[143]

Onion peel (2021) Human colorectal adenocarcinoma cell line 
with epithelial morphology

Onion peel extract reduced CRC growth and pro-
gression by downregulating L1 cell adhesion 
molecule and NF-κB

[144]

Crocin (2022) Human colon cancer lines Crocin inhibited CRC angiogenesis and metasta-
sis via VEGF downregulation and NF-κB pathway 
modulation

[145]

Liquidambar orientalis (2022) Human CRC cell lines Liquidambar orientalis extract promoted late 
apoptosis in CRC via NF-κB related pathway 
modulation

[146]

Ficus dubia (2022) Human CRC cell lines Ficus dubia latex inhibited CRC cell proliferation 
by downregulating NF-κB and related proteins

[147]

Fermented ginger (2022) Human CRC cell lines Fermented ginger extract enhanced oxaliplatin 
efficacy in CRC via NF-κB and CXCR4 suppression

[136]

Chang Qing formula (2022) Male SD rats Chang Qing formula ameliorated colitis-associ-
ated CRC by lowering IL-17A, NF-κB, impacting 
inflammation and angiogenesis

[148]

Baicalin (2022) Human CRC cell lines Baicalin targeted TLR4/NF-κB pathway, inhibits 
CRC cell growth, migration, and induces apop-
tosis

[149]

Calebin A (2023) Human colon cancer lines Calebin A reduced CRC viability, and proliferation, 
suppresses NF-κB, HIF-1α

[150]

Vitexin (2023) Human colon cancer lines Vitexin and aspirin combo inhibited CRC by tar-
geting NFKB1 and COX-2, reducing proliferation

[151]

Libidibia ferrea (2023) Male Balb/c mice Libidibia ferrea increased CRC apoptosis signifi-
cantly by downregulating NF-κB gene expression

[152]

Parthenolide (2023) The human colorectal adenocarcinoma cell lines Parthenolide reduced CRC proliferative and invasive 
potential by inhibiting NF-κB signaling and p53 
interaction

[126]

Macelignan (2024) Human CRC cell lines HCT116 Macelignan suppressed CRC metastasis by inhibit-
ing M2 polarization and IL-1β/NF-κB pathway 
activation

[116]

Osmanthus fragrans (2024) Human CRC cell lines Osmanthus fragrans exhibited anti-CRC effects 
by modulating inflammatory pathways 
and inducing apoptosis via NF-κB

[153]

Broccoli grown with deep sea 
water mineral (DSWM) fertilizer 
(2024)

Mice DSWM-broccoli inhibited colon cancer progres-
sion by regulating NF-κB, apoptosis, and cell 
cycle arrest

[154]
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